Geometric Sequences:

It's a sequence of the form $\{a_1, a_1r, a_1r^2, a_1r^3, \ldots\}$, where each term beyond the first is the factor, r, times the previous term. r is called the common ratio, and $a_1 \neq 0$. A formula for the terms of a geometric sequence is $a_n = a_1 r^{n-1}$.

Examples:

- 1. For the geometric sequence $\left\{1, \frac{2}{5}, \frac{4}{25}, \frac{8}{125}, \frac{16}{625}, \dots\right\}$,
 - a) Find the common ratio. $\frac{\frac{2}{5}}{1} = \boxed{\frac{2}{5}}$
 - b) Find a formula for the value of the n^{th} term of the sequence.

$$a_n = 1 \cdot \left(\frac{2}{5}\right)^{n-1} \Longrightarrow a_n = \left(\frac{2}{5}\right)^{n-1}$$

c) Find the 8th term in the sequence. d) Is $\frac{1,024}{9,765,625}$ a number in this sequence?

$$a_{8} = \left(\frac{2}{5}\right)^{7} = \left|\frac{128}{78,125}\right|$$

$$\left(\frac{2}{5}\right)^{n-1} = \frac{1,024}{9,765,625} \Rightarrow n = 11 \Rightarrow \boxed{Yes}$$

e) Is $\frac{4,096}{48.828.125}$ a number in this sequence?

$$\left(\frac{2}{5}\right)^{n-1} = \frac{4,096}{48,828,125} \Rightarrow n = 11.2435... \Rightarrow \boxed{No}$$

2. Find a formula for the n^{th} term of the geometric sequence of real numbers with 3^{rd} term of 3 and 6^{th} term of 24.

$$a_1 r^2 = 3, a_1 r^5 = 24$$

Dividing the second equation by the first $\Rightarrow r^3 = 8 \Rightarrow r = 2 \Rightarrow \left| a_n = \left(\frac{3}{4} \right) 2^{n-1} \right|$

3. Find x so that x-1, x, x+2 are consecutive terms in a geometric sequence.

$$\frac{x}{x-1} = \frac{x+2}{x} \Rightarrow x^2 + x - 2 = x^2 \Rightarrow x - 2 = 0 \Rightarrow x = \boxed{2}$$

The sum of the first n terms of a geometric sequence:

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = a_1 + a_1 + a_1 + a_1 + \dots + a_n + a_n$$

So

If
$$r = 1$$
, then $S_n = a_1 + a_1 + a_2 + \cdots + a_n = na_1$.

Otherwise

$$S_{n} = a_{1} + a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-1}$$

$$-rS_{n} = a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots + a_{1}r^{n-1} + a_{1}r^{n}$$

$$(1-r)S_{n} = a_{1} - a_{1}r^{n}$$

$$S_{n} = \frac{a_{1} - a_{1}r^{n}}{1-r} = a_{1} \cdot \frac{1-r^{n}}{1-r}$$

So
$$S_n = \begin{cases} na_1, r = 1 \\ a_1 \cdot \frac{1 - r^n}{1 - r}; r \neq 1 \end{cases}$$

Find the following sums:

1.
$$\frac{1}{4} + \frac{2}{4} + \frac{2^{2}}{4} + \dots + \frac{2^{n-1}}{4}$$
 What's r ? How many terms? What's a_{1} ?
$$= \frac{1}{4} \cdot 2^{1-1} + \frac{1}{4} \cdot 2^{2-1} + \frac{1}{4} \cdot 2^{3-1} + \dots + \frac{1}{4} \cdot 2^{n-1}$$

$$S_{n} = \frac{1}{4} \cdot \frac{1 - 2^{n}}{1 - 2} = \frac{2^{n} - 1}{4}$$

$$2. \frac{3}{9} + \frac{3^{2}}{9} + \frac{3^{3}}{9} + \dots + \frac{3^{n+1}}{9}$$

$$= \frac{3}{9} \cdot 3^{0} + \frac{3}{9} \cdot 3^{1} + \dots + \frac{3}{9} \cdot 3^{n}$$

What's r? How many terms? What's
$$a_1$$
?
$$n+1$$

$$\frac{3}{9}$$

$$S_{n+1} = \frac{3}{9} \cdot \frac{1 - 3^{n+1}}{1 - 3} = \frac{\left(3^{n+1} - 1\right)}{6}$$

3.
$$\sum_{k=1}^{n-1} \left(\frac{2}{3}\right)^k$$

What's r? How many terms? What's
$$a_1$$
?
$$\frac{2}{3}$$

$$n-1$$

$$S_{n-1} = \frac{2}{3} \cdot \frac{1 - \left(\frac{2}{3}\right)^{n-1}}{1 - \frac{2}{3}} = 2 \left[1 - \left(\frac{2}{3}\right)^{n-1}\right]$$

4.
$$\frac{1}{4} + \frac{2}{4} + \frac{2^2}{4} + \dots + \frac{2^{14}}{4}$$

What's
$$r$$
? How many terms? What's a_1 ?

$$S_{15} = \frac{1}{4} \cdot \frac{1 - 2^{15}}{1 - 2} = \frac{2^{15} - 1}{4} = \boxed{\frac{32,767}{4}}$$

5.
$$\sum_{n=0}^{8} \left(-\frac{2}{3}\right)^n$$

What's
$$r$$
? How many terms? What's a_1 ?

 $\frac{2}{3}$

$$S_{9} = 1 \cdot \frac{1 - \left(-\frac{2}{3}\right)^{9}}{1 - \left(-\frac{2}{3}\right)} = \frac{3}{5} \left[1 + \left(\frac{2}{3}\right)^{9}\right] = \frac{3}{5} \left[\frac{19,683}{19,683} + \frac{512}{19,683}\right] = \frac{4,039}{6,561}$$

What if you try to add all the infinitely many terms of a geometric sequence?

Let's see what happens to the sum of the first n terms, called the nth partial sum, as the number of included terms gets larger. If it settles on a value we'll say that the partial sums converge to that value. Otherwise, we'll say that the partial sums diverge.

If r = 1, $S_n = na_1$, and as n gets larger and larger, the nth partial sum, S_n , will head toward ∞ , if $a_1 > 0$, or toward $-\infty$, if $a_1 < 0$. In this case, the partial sums diverge.

For $a_1 = 5$, let's look at the partial sums:

		$S_3 = 5 + 5 + 5$	$S_4 = 5 + 5 + 5 + 5$	$S_5 = 5 + 5 + 5 + 5 + 5$	• • •
5	10	15	20	25	• •

For $a_1 = -10$, let's look at the partial sums:

$S_1 = -10$	$S_2 = -10 + -10$	$S_3 = -10 + -10 + -10$	$S_4 = -10 + -10 + -10 + -10$	•••
-10	-20	-30	-40	•••

If r = -1, $S_1 = a_1$, $S_2 = a_1 - a_1 = 0$, $S_3 = a_1 - a_1 + a_1 = a_1$,..., so the partial sums will continue to bounce between a_1 and zero as n continues to increase. In this case, the partial sums diverge.

For $a_1 = 1$, let's look at the partial sums:

$S_1 = 1$	$S_2 = 1 + -1$	$S_3 = 1 + -1 + 1$	$S_4 = 1 + -1 + 1 + -1$	$S_5 = 1 + -1 + 1 + -1 + 1$
1	0	1	0	1

If r = 0, $S_n = a_1 + 0 + 0 + \cdots + 0 = a_1$, so the partial sums always have the value a_1 as n continues to increase. In this case, we say that the partial sums converge to a_1 . For $a_1 = -2$, let's look at the partial sums:

				$S_5 = -2 + 0 + 0 + 0 + 0$
-2	-2	-2	-2	-2

Since, for $r \ne 1$ $S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$, the only chance for it to settle is if r^n settles. This only happens when -1 < r < 1, in which case, r^n settles on zero.

So
$$a_1 + a_1 r + a_1 r^2 + \dots = \sum_{n=1}^{\infty} a_1 r^{n-1}$$
 converges to $a_1 \cdot \frac{1}{1-r}$ **if** $-1 < r < 1$, **and diverges**

otherwise. The attempt at adding up all the terms of a geometric sequence,

$$a_1 + a_1 r + a_1 r^2 + \cdots = \sum_{n=1}^{\infty} a_n r^{n-1}$$
, is called an infinite geometric series, or just a geometric series.

In short, a geometric series converges to $\frac{\text{first term}}{1-r}$ if |r| < 1, and diverges if $|r| \ge 1$.

Examples:

Determine if the following geometric series are convergent or divergent. If convergent, tell what they converge to.

1.
$$2 + \frac{4}{3} + \frac{8}{9} + \cdots$$

$$|r| = \left|\frac{2}{3}\right| = \frac{2}{3} < 1 \Rightarrow \text{converges to } \frac{2}{1 - \frac{2}{3}} = 6$$

Here are the first 14 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6	S_7
2	$\frac{10}{3} = 3.\overline{3}$	$\frac{38}{9} = 4.\overline{2}$	$\frac{130}{27} = 4.\overline{814}$	$\frac{422}{81} \approx 5.21$	$\frac{1330}{243} \approx 5.47$	$\frac{4118}{729} \approx 5.65$
S_8	S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}
≈ 5.77	≈ 5.84	≈ 5.90	≈ 5.93	≈ 5.95	≈ 5.97	≈ 5.98

2. 8 + 4 + 2 + · · ·

$$|r| = \left|\frac{1}{2}\right| = \frac{1}{2} < 1 \Rightarrow \text{converges to } \frac{8}{1 - \frac{1}{2}} = 16$$

Here are the first 16 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
8	12	14	15	$\frac{31}{2} = 15.5$	$\frac{63}{4} = 15.75$	$\frac{127}{8} = 15.875$	$3\frac{255}{16} = 15.9375$
S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}
≈15.969	≈15.984	≈15.992	≈15.996	≈15.998	≈15.999	≈16.000	≈16.000

$$3. \ 2 - \frac{1}{2} + \frac{1}{8} - \frac{1}{32} + \cdots$$

$$|r| = \left| -\frac{1}{4} \right| = \frac{1}{4} < 1 \Rightarrow \text{ converges to } \frac{2}{1 - \left(-\frac{1}{4} \right)} = \frac{8}{5} = 1.6$$

Here are the first 12 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6
2	$\frac{3}{2} = 1.5$	$\frac{13}{8} = 1.625$	$\frac{51}{32} = 1.59375$	$\frac{205}{128} = 1.6015625$	$\frac{819}{512} = 1.599609375$
S_7	S_8	S_9	S_{10}	S_{11}	S_{12}
≈1.6000061	≈1.5999985	≈1.6000004	≈1.5999999	≈1.6000000	≈1.6000000

4.
$$\sum_{k=1}^{\infty} 3 \cdot \left(\frac{3}{2}\right)^{k-1}$$

$$|r| = \left| \frac{3}{2} \right| = \frac{3}{2} \ge 1 \Rightarrow \text{diverges}$$

Here are the first 12 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6
3	$\frac{15}{2} = 7.5$	$\frac{57}{4} = 14.25$	$\frac{195}{8} = 24.375$	$\frac{633}{16} = 39.5625$	$\frac{1995}{32} = 62.34375$
S_7	S_8	S_9	S_{10}	S_{11}	S_{12}
≈ 96.52	≈147.77	≈ 224.66	≈ 339.99	≈ 512.99	≈ 772.48

$$5. \sum_{n=0}^{\infty} 3 \cdot \left(\frac{2}{3}\right)^n$$

$$|r| = \left|\frac{2}{3}\right| = \frac{2}{3} < 1 \Rightarrow \text{converges to } \frac{3}{1 - \frac{2}{3}} = 9$$

Here are the first 14 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6	S_7
3	5	$\frac{19}{3} = 6.\overline{3}$	$\frac{65}{9} = 7.\overline{2}$	$\frac{211}{27} = 7.\overline{814}$	$\frac{665}{81} \approx 8.21$	$\frac{2059}{243} \approx 8.47$
S_8	S_9	S_{10}	S_{11}	S_{12}	S ₁₃	S_{14}
≈ 8.65	≈ 8.77	≈ 8.84	≈ 8.90	≈ 8.93	≈ 8.95	≈ 8.97

6.
$$\sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^{n}$$

$$|r| = \left| -\frac{1}{2} \right| = \frac{1}{2} < 1 \Rightarrow \text{converges to } \frac{1}{1 - \left(-\frac{1}{2} \right)} = \frac{2}{3} = .\overline{6}$$

Here are the first 16 partial sums.

S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8
1	$\frac{1}{2} = .5$	$\frac{3}{4} = .75$	$\frac{5}{8} = .625$	$\frac{11}{16} = .6875$	$\frac{21}{32}$ = .65625	$\frac{43}{64} = .671875$	$\frac{85}{128} = .6640625$
S_9	S_{10}	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}	S_{16}
≈.66797	≈.66602	≈.66699	≈.66650	≈.66675	≈.66663	≈.66669	≈.66666

Other Infinite Series:

In general, all infinite series, $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$, can be analyzed by looking at their related sequence of partial sums.

Examples:

1.
$$\sum_{n=1}^{\infty} n$$

It's sequence of partial sums is given by $S_n = 1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$. Clearly, as $n \to \infty$, the values of the partial sums go to ∞ , so this series is divergent.

$$2. \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

It's sequence of partial sums is given by $S_n = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$. $= 1 - \frac{1}{n+1}$

As $n \to \infty$, the values of the partial sums go to 1, so this series converges to 1.

$$3. \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1} \right)$$

It's sequence of partial sums is given by

$$S_{n} = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \dots + \ln \frac{n}{n+1}$$

$$= (\ln 1 - \ln 2) + (\ln 2 - \ln 3) + (\ln 3 - \ln 4) + \dots + [\ln n - \ln (n+1)]$$

$$= \ln 1 - \ln (n+1)$$

$$= -\ln (n+1)$$

As $n \to \infty$, the values of the partial sums go to $-\infty$, so this series diverges.