
Polar Coordinates: 

There is an alternative method for locating points in the plane called polar 

coordinates.  
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Rectangular/Cartesian coordinates are unique.  Polar coordinates are not unique. 

 

Example: 

1. Find polar coordinates for the point with rectangular coordinates ( )11, . 
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Yes, there are infinitely many polar coordinates for a given pair of rectangular 

coordinates.  Infinitely many angles, and r can also be negative. 

 

2. Find polar coordinates for the point with rectangular coordinates ( )0 0, . 

( )0, ,  where  is any angle.    Even the origin has infinitely many polar coordinates. 

1 

1 
2  

4


 

5

4


 



Conversion Equations: 

2 2 2x y r+ =  

x r cos=  

y r sin=  

y
tan

x
 =  

 

Examples: 

1. Find polar coordinates for the rectangular coordinates ( )3 1,− . 
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2. Find rectangular coordinates for the polar coordinates 
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3. Transform the rectangular coordinate equation 2 2 4x y+ =  into an equivalent polar 

coordinate equation, and graph the solution curve. 

2 2 24 4 2 or 2x y r r r+ =  =  = = −  
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4. Transform the rectangular coordinate equation 3x =  into an equivalent polar 

coordinate equation, and graph the solution curve. 

3
3 3 3x r cos r r sec

cos
 


=  =  =  =  

 

 

 

 

5. Transform the rectangular coordinate equation 2y x=  into an equivalent polar 

coordinate equation, and graph the solution curve. 

( )
22 2y x r sin r cos sin r cos r sec tan     =  =  =  =  
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6. Transform the polar coordinate equation 2r sin =  into an equivalent rectangular 

coordinate equation, and graph the solution curve. 

2 2r sin y =  =  

 

 

 

 

7. Transform the polar coordinate equation 2r cos=  into an equivalent rectangular 

coordinate equation, and graph the solution curve. 

( )
22 2 2 2 2 22 2 2 2 0 1 1r cos r r cos x y x x x y x y =  =  + =  − + =  − + =  
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8. Transform the polar coordinate equation r sin cos = −  into an equivalent 

rectangular coordinate equation, and graph the solution curve. 
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Special Polar Coordinate Equations/Graphs: 

Cardioid: 

1. 1r cos= +  

Start with an r vs.   plot, treating r and   as rectangular coordinates. 

Use the r vs.   plot to help you create 

The polar coordinate graph. 
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If r is zero for a particular value 

0
 , then the graph comes into the 

origin tangent to the line 
0

 = . 

Here, the value is  . 



2. ( )2 1r sin= −                                                                  
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To find the angle(s) where r is zero, solve 

the trig. equation, ( )2 1 0sin− = . 



Cardioid with an Inner Loop: 

1. 1 2r cos= +  
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The inner loop is traced 

when r takes on negative 

values for   between 
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and 
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
.  The graph 

approaches the origin 

tangent to these two lines. 
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To find the angle(s) where r is zero, 

solve the trig. equation, 1 2 0cos+ = . 



2. 1 2r sin= +  
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To find the angle(s) where r is zero, 

solve the trig. equation, 1 2 0sin+ = . 



Rose: 

( )2 2r sin =  

 

 

 

 

 

 

 

 

 

 

 

 

 

To find the angle(s) where r is zero, 

solve the trig. equation, 2 2 0sin  = . 
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The tips of the four petals occur 

for 
3 5 7

, , ,
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 = .  The graph 

approaches the origin tangent to 

the lines corresponding to the 

angles 
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petals are traced with positive r 

values and two with negative r 

values. 

 



Lemniscate: 

( )2 2r cos =  

 

 

 

 

 

 

 

 

 

 

 

 

 

Start with an 
2r  vs.   plot, and then 

convert it into an r  vs.   plot by 

taking square-roots.  Note that 
2r  can’t 

be negative.  

1 

4


 

3

4


 

5

4


 

7

4


 2  

0  

2r  

  

4


 

3

4


 

5

4


 

7

4


 2  0    

r  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
1−  

4


 =  

3

4


 =  

5

4


 =  

7

4


 =  

The positive r values trace the entire curve once, and the negative r values 

trace it again. 



Spiral:  

0r ; =   
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Intersections of Polar Graphs: 

1. Find the points of intersection of the graphs of the polar coordinate equations 1r =  

and 1r cos= − . 

 

Set the equations equal to each other, solve, 

and use symmetry in the graph, if possible.
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2. Find the points of intersection of the graphs of the polar coordinate equations 1r =  

and ( )2 2r sin = . 

Set the equations equal to each other, solve, 

and use symmetry in the graph, if possible.
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3. Find the points of intersection of the graphs of the polar coordinate equations 

1r cos= −  and r cos= . 

 

( )

Set the equations equal to each other, solve, 

and use symmetry in the graph, if possible.
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So from the graph, the three points of intersection are 
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Notice that the origin wasn’t detected from setting the equations equal to each other 

because the curves are at the origin for different values of  .  This is why it’s important to 

look at the graphs of both equations!  

 

 


