Review of Quadratic Functions:

The graphs of quadratic functions are called parabolas.

General Form:

$$f(x) = ax^2 + bx + c ; a \neq 0$$

Standard Form:

$$f(x) = a(x-h)^2 + k ; a \neq 0$$

10-

Minimum vertex

40-

30

Maximum vertex

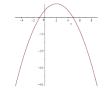
-20--30-

Intercept Form:

$$f(x) = a(x-x_1)(x-x_2)$$
; $a \ne 0, x_1$ and x_2 are real numbers

General Form:

$$f(x) = ax^2 + bx + c ; a \neq 0$$



If a > 0, the parabola opens up; if a < 0, the parabola opens down. The y-intercept is c.

Standard Form:

$$f(x) = a(x-h)^2 + k ; a \neq 0$$

The vertex is at (h,k) and it's a minimum vertex if a > 0 and a maximum vertex if a < 0.

Intercept Form:

$$f(x) = a(x - x_1)(x - x_2)$$
; $a \ne 0, x_1$ and x_2 are real numbers

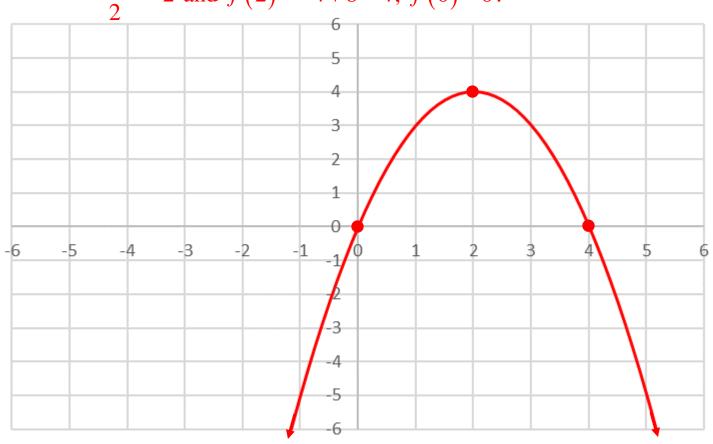
 x_1 and x_2 are the x-intercepts, and the x-coordinate of the vertex is $\frac{x_1 + x_2}{2}$. The vertex is a minimum if a > 0 and a maximum if a < 0.

Graph the following quadratic functions. Indicate the vertex and all the intercepts.

1.
$$f(x) = -x^2 + 4x$$
 {Convert to intercept form by factoring out $-x$.}
$$= -x(x-4)$$
 The x-coordinate of the vertex is the average of the two x-intercept.

The *x*-coordinate of the vertex is the average of the two *x*-intercepts:

$$\frac{0+4}{2} = 2$$
 and $f(2) = -4+8=4$, $f(0) = 0$.

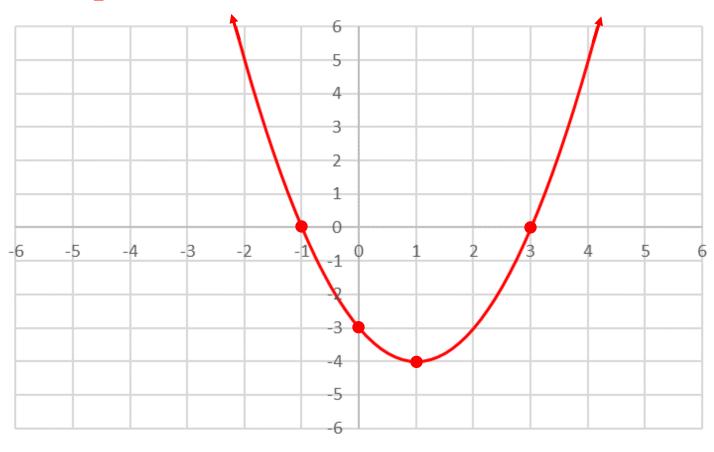


2.
$$f(x) = x^2 - 2x - 3$$

{Convert to intercept form by factoring the trinomial.}

=(x-3)(x+1) The x-coordinate of the vertex is the average of the two x-intercepts:

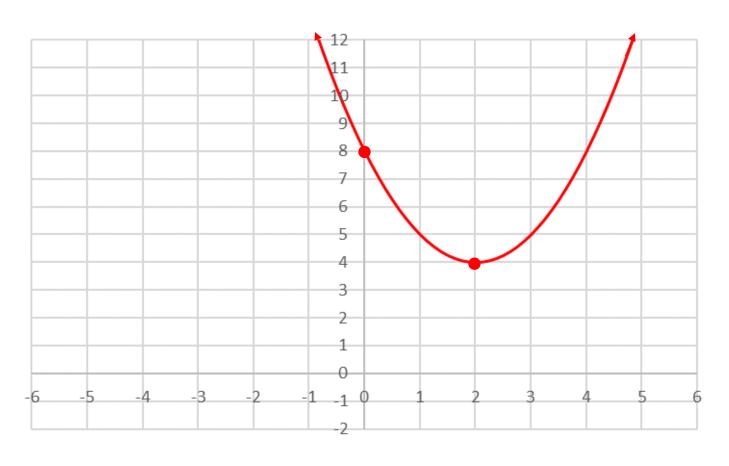
$$\frac{3+(-1)}{2}$$
 = 1 and $f(1)=1-2-3=-4$, $f(0)=-3$.



3.
$$f(x) = (x-2)^2 + 4$$

{It's in standard form.}

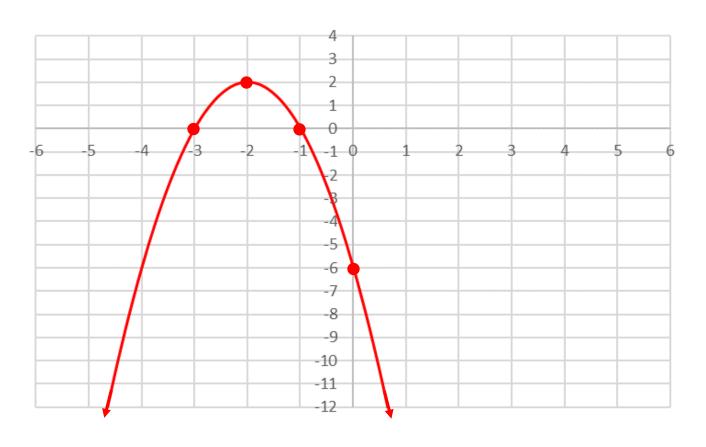
$$f(0) = 4 + 4 = 8$$



4.
$$f(x) = -2(x+2)^2 + 2$$

{It's in standard form.}

$$2(x+2)^2 = 2 \Rightarrow (x+2)^2 = 1 \Rightarrow x+2 = \pm 1 \Rightarrow x = -1, -3 \text{ and } f(0) = -8+2 = -6.$$

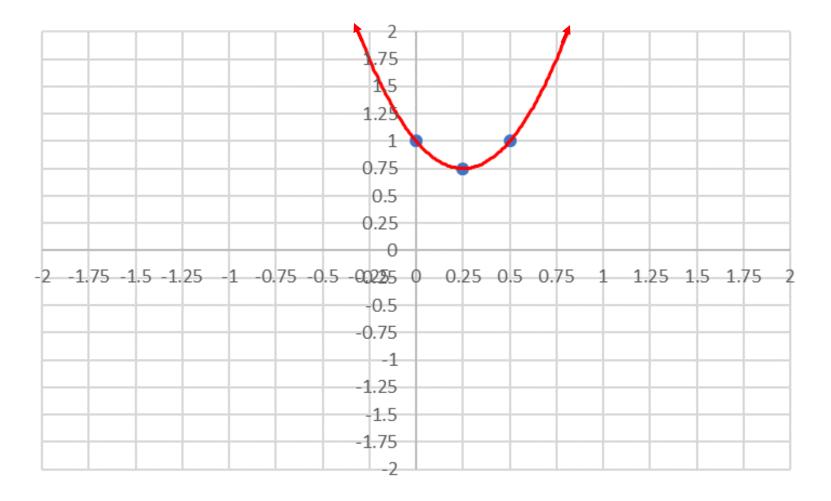


5.
$$f(x) = 4x^2 - 2x + 1$$
 {Convert to standard form by completing the square.}

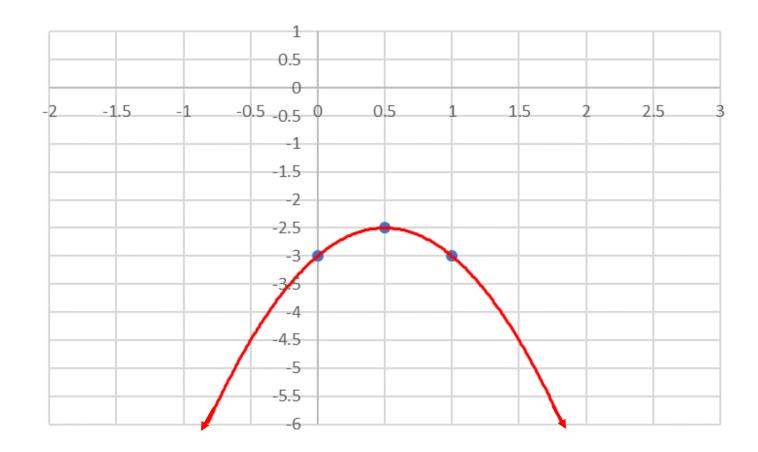
$$= 4(x^2 - \frac{1}{2}x) + 1$$

$$= 4(x^2 - \frac{1}{2}x + \frac{1}{16}) + 1 - \frac{1}{4}$$

$$= 4(x - \frac{1}{4})^2 + \frac{3}{4}$$



6.
$$f(x) = -2x^2 + 2x - 3$$
 {Convert to standard form by completing the square.}
 $= -2(x^2 - x) - 3$
 $= -2(x^2 - x + \frac{1}{4}) - 3 + \frac{1}{2}$
 $= -2(x - \frac{1}{2})^2 - \frac{5}{2}$



Finding Formulas for Quadratic Functions:

1. The vertex of the parabola is (1,2), and it passes through the point (3,0).

$$\left\{ f\left(x\right) = a\left(x-h\right)^{2} + k \right\}$$

$$\Rightarrow a = -\frac{1}{2}$$

 $f(x) = a(x-1)^2 + 2$

 $\Rightarrow 0 = a(3-1)^2 + 2$

 \Rightarrow 0 = 4a + 2

$$\Rightarrow f(x) = -\frac{1}{2}(x-1)^2 + 2$$

2. The x-intercepts are 5 and -3, and the graph passes through the point (0,-4).

$$\left\{ f\left(x\right) = a\left(x - x_{1}\right)\left(x - x_{2}\right)\right\}$$

$$f(x) = a(x-5)(x+3)$$

$$\Rightarrow$$
 $-4 = a(0-5)(0+3)$

$$\Rightarrow$$
 $-4 = -15a$

$$\Rightarrow a = \frac{4}{15}$$

$$\Rightarrow f(x) = \frac{4}{15}(x-5)(x+3)$$

3. The graph passes through the points (0,1), (1,2), and (-1,4).

$$\left\{ f\left(x\right) = ax^2 + bx + c \right\}$$

$$f(x) = ax^2 + bx + c$$

Substitute the *x* and *y* coordinates into the formula for the function.

$$\frac{1=c}{2=a+b+c}$$

$$4=a-b+c$$

Substitute 1 for *c* in the last two equations.

$$\Rightarrow 1 = a + b$$
$$3 = a - b$$

Add the two equations together.

$$\Rightarrow 4 = 2a$$
$$\Rightarrow \underline{a} = 2, \underline{b} = -1$$

Plug in the values of a, b, and c into the function formula.

$$\Rightarrow f(x) = 2x^2 - x + 1$$

4. The graph passes through the points (1,2) and (5,2), and the minimum value of the function is -4.

$$\left\{ f\left(x\right) = a\left(x-h\right)^{2} + k \right\}$$

Since the two points on the graph have the same *y*-coordinate, by symmetry the average of their *x*-coordinates must be the *x*-coordinate of the vertex. The minimum value would have to be the *y*-coordinate of the vertex.

$$f(x) = a(x-3)^{2} - 4$$

$$\Rightarrow 2 = a(1-3)^{2} - 4$$

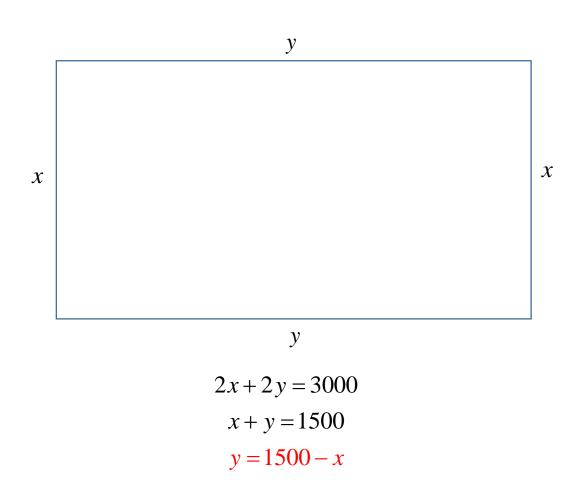
$$\Rightarrow 2 = 4a - 4$$

$$\Rightarrow a = \frac{3}{2}$$

$$\Rightarrow f(x) = \frac{3}{2}(x-3)^{2} - 4$$

Word Problems:

1. Joe has 3,000 feet of fence available to enclose a rectangular field.



a) Express the enclosed area, A, as a function of x.

$$A = xy$$
Replace the y with $1500 - x$.
$$\Rightarrow A = x(1500 - x)$$

$$\Rightarrow A(x) = x(1500 - x)$$

b) Determine the domain of the function, A(x).

Both of the dimensions of the rectangle must be positive, so

$$x > 0.1500 - x > 0$$

$$\Rightarrow x > 0 \text{ and } x < 1500$$

$$\Rightarrow 0 < x < 1500 \text{ or } (0.1500)$$

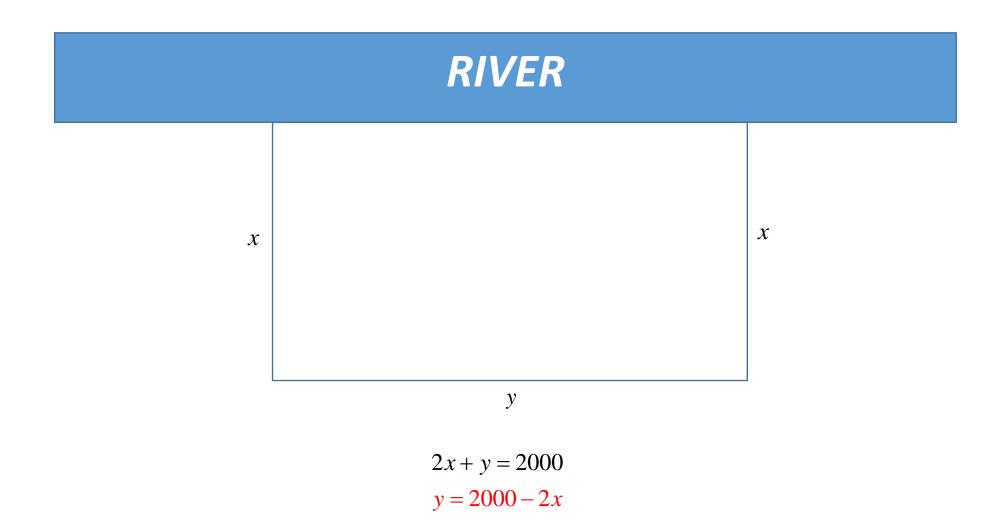
c) For what value of x is the enclosed area the largest?

The graph of the quadratic function that represents the enclosed area takes on the value zero at x = 0,1500, so the value of x that corresponds to the maximum enclosed area is the average of these two values. So $x = \boxed{750 \, ft}$.

d) What is the value of the largest enclosed area?

$$A(750) = 750 \cdot 750 = \boxed{562,500 \, ft^2}$$

2. A farmer with 2,000 yards of fence wants to enclose a rectangular field that borders on a straight river-so he'll only need fence on three sides of the field.



a) Express the enclosed area, A, as a function of x.

$$A = xy$$
Replace y with $2000 - 2x$.
$$\Rightarrow A = x(2000 - 2x)$$

$$\Rightarrow A = 2x(1000 - x)$$

$$\Rightarrow A \boxed{(x) = 2x(1000 - x)}$$

b) Determine the domain of the function, A(x).

Both of the dimensions of the rectangle must be positive, so

$$x > 0,2000 - 2x > 0$$

$$\Rightarrow x > 0 \text{ and } 2x < 2000$$

$$\Rightarrow x > 0 \text{ and } x < 1000$$

$$\Rightarrow 0 < x < 1000 \text{ or } (0,1000)$$

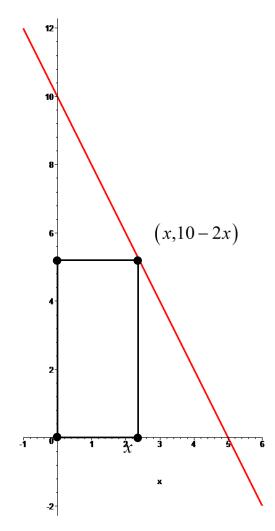
c) For what value of x is the enclosed area the largest?

The graph of the quadratic function that represents the enclosed area takes on the value zero at x = 0,1000, so the value of x that corresponds to the maximum enclosed area is the average of these two values. So $x = \boxed{500 \, yds}$.

d) What is the value of the largest enclosed area?

$$A(500) = 1000 \cdot 500 = \boxed{500,000 \, yd^2}$$

3. A rectangle in the first quadrant has one vertex on the line y = 10 - 2x, another at the origin, one on the positive x-axis, and one on the positive y-axis. (See the figure.)



a) Express the area A of the rectangle as a function of x.

$$A = xy$$
Replace y with $10 - 2x$.
$$\Rightarrow A = x(10 - 2x)$$

$$\Rightarrow A = 2x(5 - x)$$

$$\Rightarrow A \boxed{(x) = 2x(5 - x)}$$

b) What's the domain of A(x)?

In order to have such rectangle, 0 < x < 5 or (0,5)

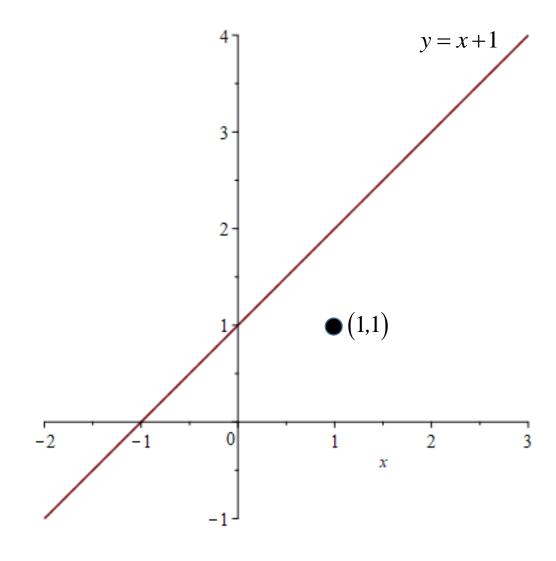
c) What value of x produces the maximum area?

The graph of the quadratic function that represents the enclosed area takes on the value zero at x = 0,5, so the value of x that corresponds to the maximum enclosed area is the average of these two values. So $x = \frac{5}{2}units$.

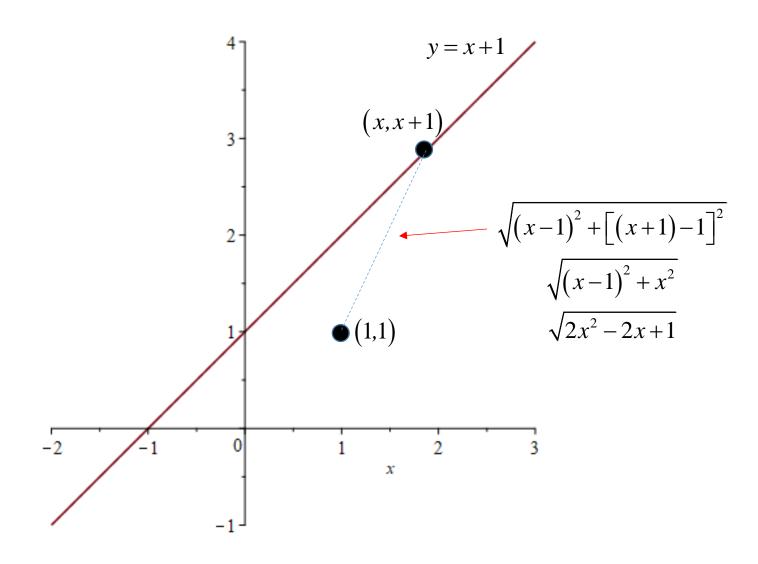
d) What is the maximum area?

$$A\left(\frac{5}{2}\right) = 5 \cdot \frac{5}{2} = \boxed{\frac{25}{2} unit^2}$$

4. Find the point on the line y = x + 1 that is closest to the point (1,1).



a) Express the distance from a point on the line (x, x+1) to the point (1,1) as a function of x.



b) Express the square of the distance as a nice quadratic function.

$$D = \left(\sqrt{2x^2 - 2x + 1}\right)^2$$

$$\Rightarrow D(x) = 2x^2 - 2x + 1$$

c) What's the domain of the function?

There are no restrictions on x, so the domain is $(-\infty, \infty)$.

d) Use the quadratic function to find the closest point on the line.

Complete the square to get standard form.

$$D(x) = 2x^{2} - 2x + 1$$

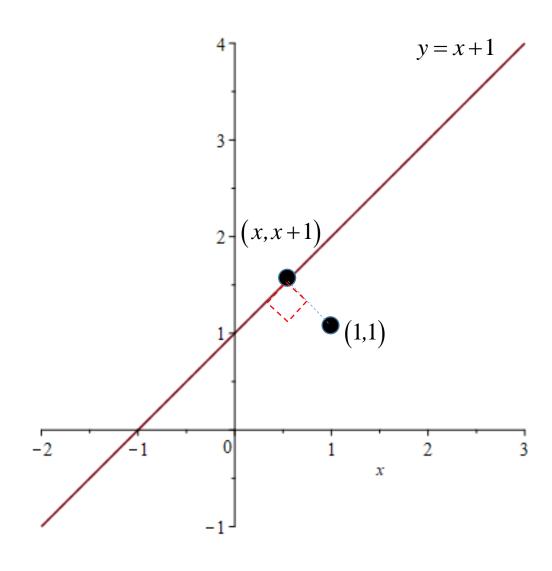
$$= 2(x^{2} - x) + 1$$

$$= 2(x^{2} - x + \frac{1}{4}) + 1 - \frac{1}{2}$$

$$= 2(x - \frac{1}{2})^{2} + \frac{1}{2}$$

So the closest point has an x-coordinate of $\frac{1}{2}$, and therefore, the closest point is $\left|\left(\frac{1}{2},\frac{3}{2}\right)\right|$.

e) An alternative method using geometry.



When you're at the closest point, the angle formed must be a right angle, so the slope from (1,1) to (x,x+1) would have to be the negative reciprocal of the slope of the line y=x+1.

{slope from (1,1) to
$$(x,x+1)$$
} $\frac{x+1-1}{x-1} = -1$ {negative reciprocal of the slope}
$$\frac{x+1-1}{x-1} = -1$$

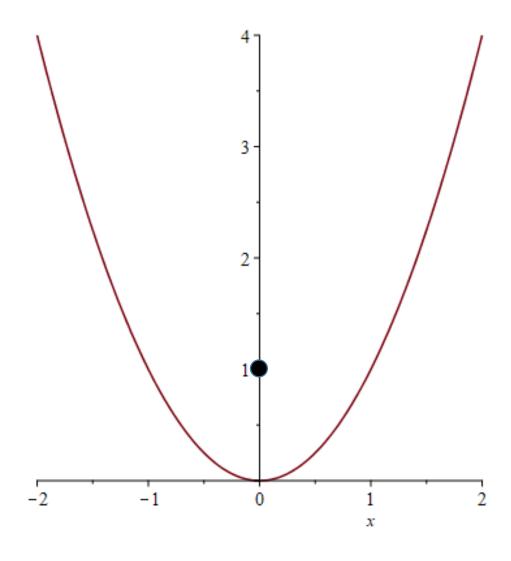
$$\Rightarrow \frac{x}{x-1} = -1$$
Cross-multiply.
$$\Rightarrow x = -x+1$$

$$\Rightarrow 2x = 1$$

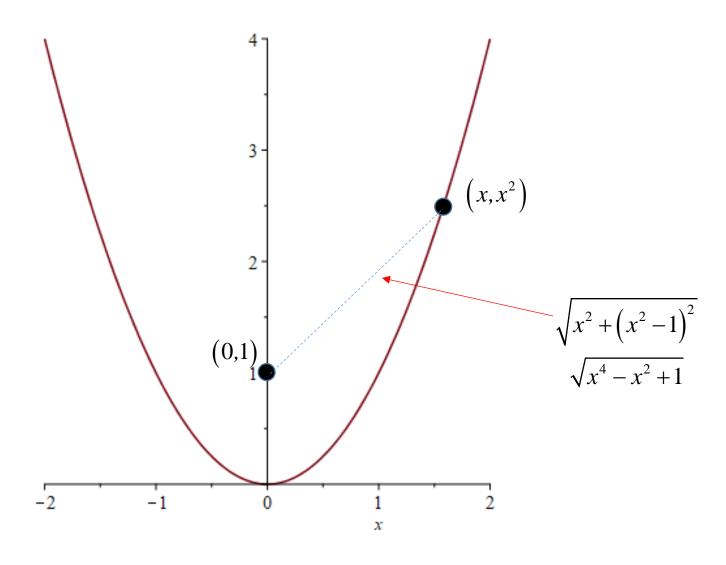
$$\Rightarrow x = \frac{1}{2}$$

So we get the same point that we got in the previous approach with much less effort.

5. Find the point(s) on the parabola $y = x^2$ closest to the point (0,1).



a) Express the distance from a point on the parabola (x, x^2) to the point (0,1) as a function of x.



b) Express the square of the distance as a nice quadratic function in x^2 .

$$D = \left(\sqrt{x^4 - x^2 + 1}\right)^2$$

$$\Rightarrow D(x) = x^4 - x^2 + 1$$

c) Use completing the square to find the point(s) on the parabola closest to (0,1).

$$D(x) = x^{4} - x^{2} + 1$$

$$= (x^{4} - x^{2} + \frac{1}{4}) + 1 - \frac{1}{4}$$

$$= (x^{2} - \frac{1}{2})^{2} + \frac{3}{4}$$

This will take on its smallest value when $x^2 - \frac{1}{2} = 0 \Rightarrow x = \pm \sqrt{\frac{1}{2}}$. So the closest points are

$$\left(\sqrt{\frac{1}{2}},\frac{1}{2}\right)$$
 and $\left(-\sqrt{\frac{1}{2}},\frac{1}{2}\right)$.

When you take Calculus, you will be introduced to methods for solving problems like this that are a little quicker.