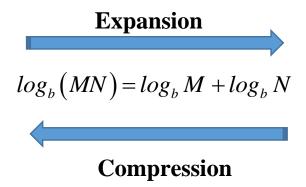
Review of Properties of Logarithms:

For M and N positive numbers and r a real number,

Product Rule:



Why?
$$b^{\log_b(MN)} = MN$$

and
$$b^{(log_bM+log_bN)} = b^{log_bM} \cdot b^{log_bN} = MN$$

Expand and simplify:

$$log_5(25x)$$

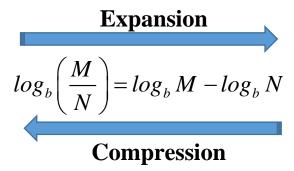
$$log_5(25x) = log_5 25 + log_5 x = 2 + log_5 x$$

Compress and simplify:

$$log_69 + log_64$$

$$log_6 9 + log_6 4 = log_6 36 = \boxed{2}$$

Quotient Rule:



Why?
$$b^{\log_b\left(\frac{M}{N}\right)} = \frac{M}{N}$$

Why?
$$b^{\log_b\left(\frac{M}{N}\right)} = \frac{M}{N}$$
 and $b^{(\log_b M - \log_b N)} = \frac{b^{\log_b M}}{b^{\log_b N}} = \frac{M}{N}$

Expand and simplify:

$$log_3\left(\frac{x}{9}\right)$$

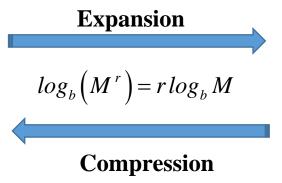
$$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = \boxed{\log_3 x - 2}$$

Compress and simplify:

$$log_3 2 - log_3 6$$

$$log_3 2 - log_3 6 = log_3 \left(\frac{1}{3}\right) = \boxed{-1}$$

Power Rule:



Why?
$$b^{\log_b(M^r)} = M^r$$

Why?
$$b^{\log_b(M^r)} = M^r$$
 and $b^{r \log_b M} = (b^{\log_b M})^r = M^r$

Expand and simplify:

$$log_7(7x^5)$$

$$log_7(7x^5) = log_7 7 + 5log_7 x = \boxed{1 + 5log_7 x}$$

Compress:

$$2log_3 x - 4log_3 y$$

$$2\log_3 x - 4\log_3 y = \log_3 x^2 - \log_3 y^4 = \log_3 \left(\frac{x^2}{y^4}\right)$$

Expand:
$$log_2 \left[\frac{x^3(x+2)}{(x+3)^2} \right]$$

$$log_{2} \left[\frac{x^{3}(x+2)}{(x+3)^{2}} \right] = log_{2} x^{3} + log_{2}(x+2) - log_{2} \left[(x+3)^{2} \right]$$
$$= 3log_{2} x + log_{2}(x+2) - 2log_{2}(x+3)$$

Compress:
$$3log_5(3x+1)-2log_5(2x-1)-log_5 x$$

$$3\log_{5}(3x+1) - 2\log_{5}(2x-1) - \log_{5}x = \log_{5}\left[\left(3x+1\right)^{3}\right] - \log_{5}\left[\left(2x-1\right)^{2}\right]$$
$$= \log_{5}\left[\frac{\left(3x+1\right)^{3}}{\left(2x-1\right)^{2}}\right]$$

Change of Base Formula:

Suppose that $y = log_b x$. Then $b^y = x$ and therefore $log_a(b^y) = log_a x$. From the Power

Rule, you get $y \log_a b = \log_a x$, and solving for y yields $y = \frac{\log_a x}{\log_a b}$. So

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

Calculators have a logarithm key for base 10, log, called the common logarithm. They also have a logarithm key for base e, ln, called the natural logarithm. e = 2.7182818...

$$\log_b x = \frac{\log x}{\log b}$$

Or

$$\log_b x = \frac{\ln x}{\ln b}$$

Example:

Calculate $log_3 5$ to 3 decimal places.

$$\log_3 5 = \frac{\log 5}{\log 3}$$

Or

$$\log_3 5 = \frac{\ln 5}{\ln 3}$$

Exponential and Logarithmic Equations:

The goal in solving exponential and logarithmic equations is to remove the exponential and logarithmic parts, eventually.

$$b^x = b^y \Rightarrow x = y$$

$$log_b x = log_b y \Rightarrow x = y$$

$$log_b(b^x) = x$$
; for all x

$$b^{\log_b x} = x$$
; for $x > 0$

Examples:

1.
$$log(x+6)=1$$

$$\Rightarrow 10^{\log(x+6)} = 10^1 \Rightarrow x+6=10 \Rightarrow x=\boxed{4}$$

2.
$$log_4(x+2) = log_4 8$$

$$\Rightarrow x + 2 = 8 \Rightarrow x = \boxed{6}$$

3.
$$log_4(x+2) = log_4(2x+7)$$

$$\Rightarrow x + 2 = 2x + 7 \Rightarrow x = -5$$

$$\Rightarrow$$
 no solution

−5 doesn't satisfy the original equation because it creates logarithms of negative numbers.

{Be careful!}

4. $2log_5 x = 3log_5 4$

$$\Rightarrow log_5 x^2 = log_5 4^3 \Rightarrow x^2 = 64$$

 $\Rightarrow x = \pm 8 \Rightarrow x = \boxed{8}$, -8 creates a logarithm of a negative number in the original equation.

5.
$$log_6(x+4) + log_6(x+3) = 1$$

$$\Rightarrow log_6 \lceil (x+4)(x+3) \rceil = 1 \Rightarrow (x+4)(x+3) = 6$$

$$\Rightarrow x^2 + 7x + 12 = 6 \Rightarrow x^2 + 7x + 6 = 0$$

$$\Rightarrow$$
 $(x+1)(x+6) = 0 \Rightarrow x = -1, -6 \Rightarrow x = \boxed{-1}$

-6 creates logarithms of negative numbers in the original equation.

6.
$$log_3 x - 2log_3 5 = log_3 (x+1) - 2log_3 10$$

$$\Rightarrow log_3\left(\frac{x}{25}\right) = log_3\left[\frac{(x+1)}{100}\right] \Rightarrow \frac{x}{25} = \frac{(x+1)}{100} \Rightarrow 100x = 25x + 25 \Rightarrow 75x = 25 \Rightarrow x = \boxed{\frac{1}{3}}$$

7.
$$3^{2x} + 3^x - 2 = 0$$

$$\Rightarrow (3^x + 2)(3^x - 1) = 0 \Rightarrow 3^x = -2, 3^x = 1$$

 $\Rightarrow x = \boxed{0}$, 3^x only produces positive values, so it can't equal -2.

8.
$$2^{2x} + 2^{x+2} - 12 = 0$$

$$\Rightarrow 2^{2x} + 4 \cdot 2^x - 12 = 0 \Rightarrow (2^x + 6)(2^x - 2) = 0$$

 $\Rightarrow 2^x = -6, 2^x = 2 \Rightarrow x = \boxed{1}, \ 2^x \text{ produces only positive values, so it can't equal } -6.$

9.
$$3^{1-2x} = 4^x$$

$$\Rightarrow ln(3^{1-2x}) = ln(4^x) \Rightarrow (1-2x)ln3 = xln4 \Rightarrow ln3 = (2ln3 + ln4)x$$

$$\Rightarrow x = \boxed{\frac{ln3}{2ln3 + ln4}}$$

10.
$$5^{2x} - 8 \cdot 5^x = -16$$

$$\Rightarrow 5^{2x} - 8 \cdot 5^x + 16 = 0 \Rightarrow \left(5^x - 4\right)^2 = 0$$

$$\Rightarrow 5^x = 4 \Rightarrow x = \boxed{\frac{\log 4}{\log 5}}$$

11.
$$3^x - 14 \cdot 3^{-x} = 5$$

$$\Rightarrow 3^{x} (3^{x} - 14 \cdot 3^{-x}) = 5 \cdot 3^{x} \Rightarrow 3^{2x} - 14 = 5 \cdot 3^{x} \Rightarrow 3^{2x} - 5 \cdot 3^{x} - 14 = 0$$

$$\Rightarrow (3^{x} - 7)(3^{x} + 2) = 0 \Rightarrow 3^{x} = 7, 3^{x} = -2 \Rightarrow x = \boxed{\frac{\ln 7}{\ln 3}}$$

 3^x produces only positive values, so it can't equal -2.

<u>Approximating Solutions of Equations Using the Method of Successive</u> <u>Approximation:</u>

Step #1: Arrange the equation into the form x = f(x).

Step #2: Choose a starting guess/approximation for a solution, x_1 .

Step #3: Evaluate the function, f, at x_1 to get the second approximation, x_2 .

Step #4: Continue this process of evaluating the function, f, at the current approximation, x_{n-1} , to get the next approximation, x_n .

$$x_n = f\left(x_{n-1}\right)$$

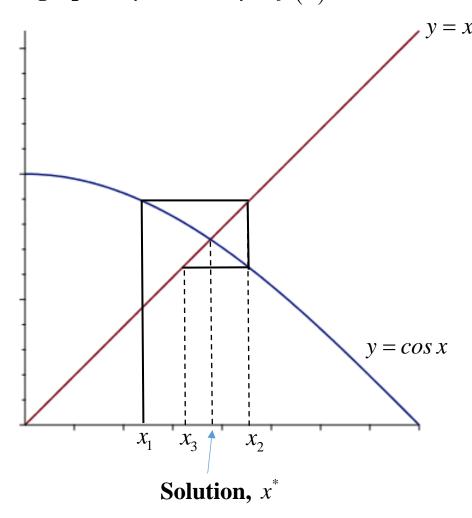
Example: Approximate a solution of the equation x = cos x using the Method of Successive Approximation with a starting guess of $x_1 = .5$.

x_1	.5
x_2	.877582561
x_3	.639012494
\mathcal{X}_4	.8026851
x_5	.694778026
x_6	.768195831
x_7	.719165445
\mathcal{X}_8	.752355759
X_9	.730081063
x_{10}	.745120341
x_{11}	.735006309
x_{12}	.741826522

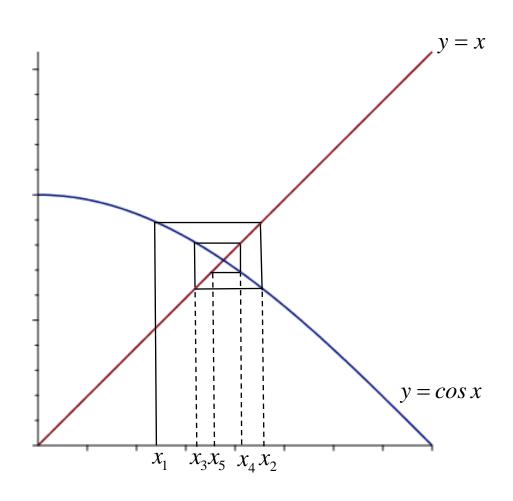
Check out the link Successive XL.

How do you know if the Method of Successive Approximation is producing approximations that are getting closer to an actual solution?

Do a graphical analysis called a <u>Cobweb Diagram</u>. Solutions correspond to points of intersection between the graph of y = x and y = f(x).



The order you follow to create the Cobweb Diagram is vertically to the curve(y = f(x)), horizontally to the line(y = x), vertically to the curve, horizontally to the line, ...



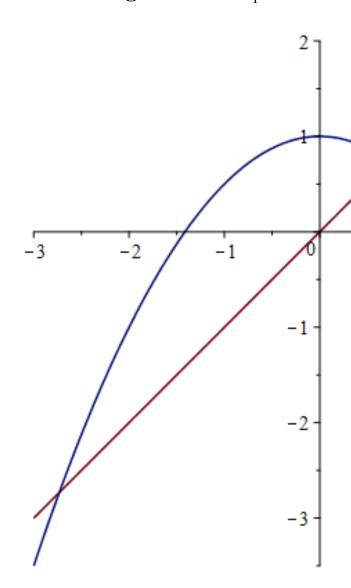
Solutions for which nearby starting guesses generate approximations that get closer to the solution are called <u>attracting solutions</u>.

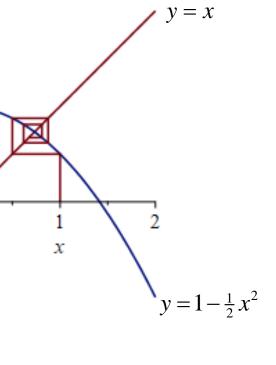
Solutions for which nearby starting guesses generate approximations that are pushed away from the solution are called <u>repelling solutions</u>.

Repelling solutions are invisible to this method of approximation.

The equation $1 - \frac{1}{2}x^2 = x$ has two solutions. Classify them as attracting or repelling. Demonstrate with the starting values of $x_1 = 1, 0, -2, -3$.

x_1	1
x_2	0.5
x_3	0.875
\mathcal{X}_4	0.6171875
X_5	0.809539795
x_6	0.67232266
x_7	0.77399112
x_8	0.700468873
x_9	0.754671679
x_{10}	0.715235328
x_{11}	0.744219213
x_{12}	0.723068882
<i>x</i> ₁₃	0.738585696
<i>x</i> ₁₄	0.727245585
<i>x</i> ₁₅	0.73555693
x_{16}	0.729478002
<i>x</i> ₁₇	0.733930923
<i>x</i> ₁₈	0.7306727
<i>x</i> ₁₉	0.733058702
x_{20}	0.731312469

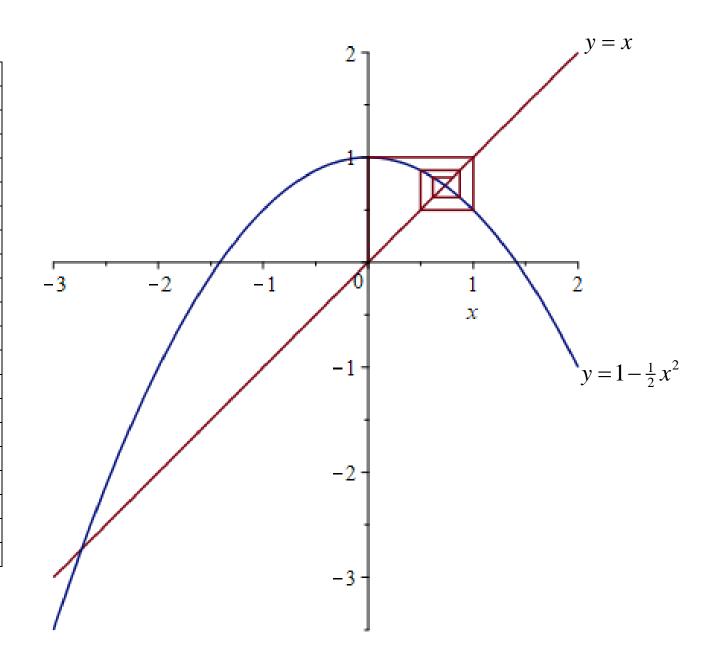




The two solutions correspond to the *x*-coordinates of the two points of intersection of the curves y = x and $y = 1 - \frac{1}{2}x^2$.

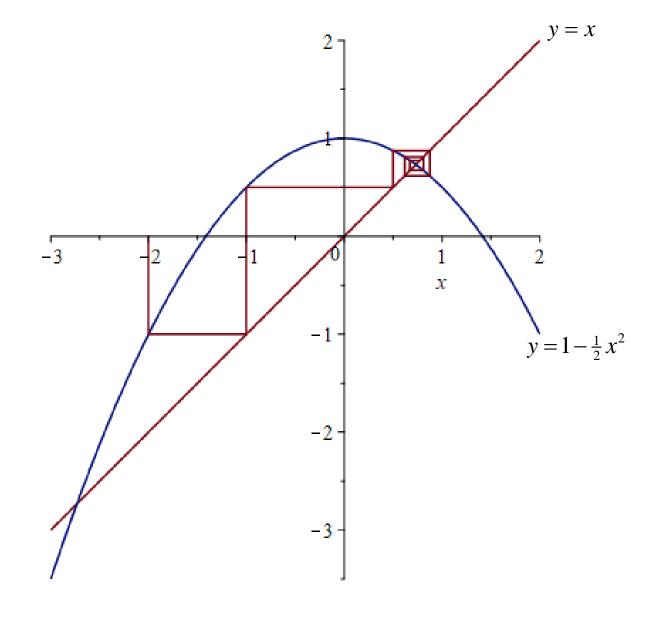
\mathcal{X}_1	=	0
		_

0
1
0.5
0.875
0.6171875
0.809539795
0.67232266
0.77399112
0.700468873
0.754671679
0.715235328
0.744219213
0.723068882
0.738585696
0.727245585
0.73555693
0.729478002
0.733930923
0.7306727
0.733058702
0.731312469

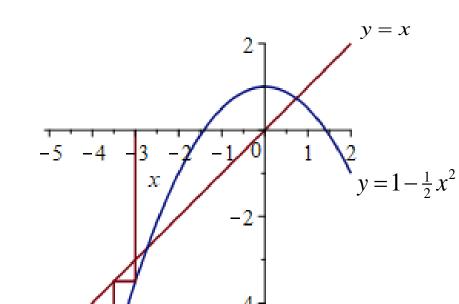


\mathcal{X}_1	= -	-2
\mathcal{A}_1		_

-2
-1
0.5
0.875
0.6171875
0.809539795
0.67232266
0.77399112
0.700468873
0.754671679
0.715235328
0.744219213
0.723068882
0.738585696
0.727245585
0.73555693
0.729478002
0.733930923
0.7306727
0.733058702
0.731312469



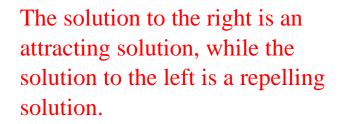
-3
-3.5
-5.125
-12.1328125
-72.60256958
-2634.566555
-3470469.466
-6.02208 x 10 ¹²
-1.81327 x 10 ²⁵
-1.64398 x 10 ⁵⁰
-1.3513 x 10 ¹⁰⁰
-9.1305 x 10 ¹⁹⁹



-6-

-8-

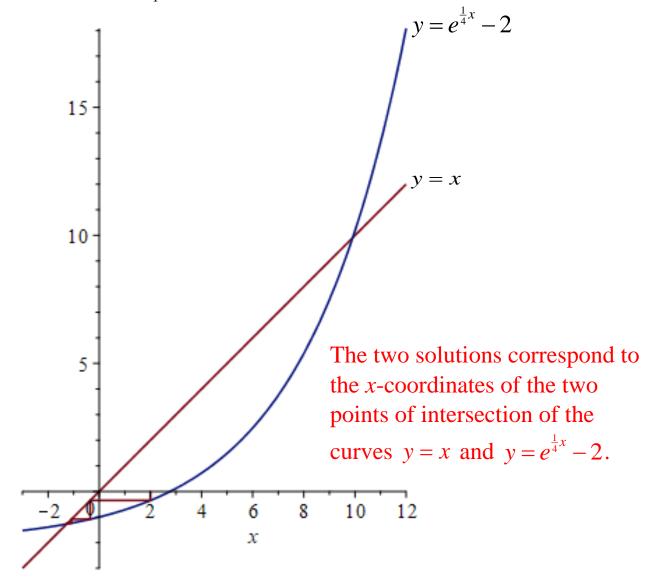
-10-



The equation $e^{\frac{1}{4}x} - 2 = x$ has two solutions. Classify them as attracting or repelling. Demonstrate with the starting values of $x_1 = 2, 6, 8, 10, -2$.

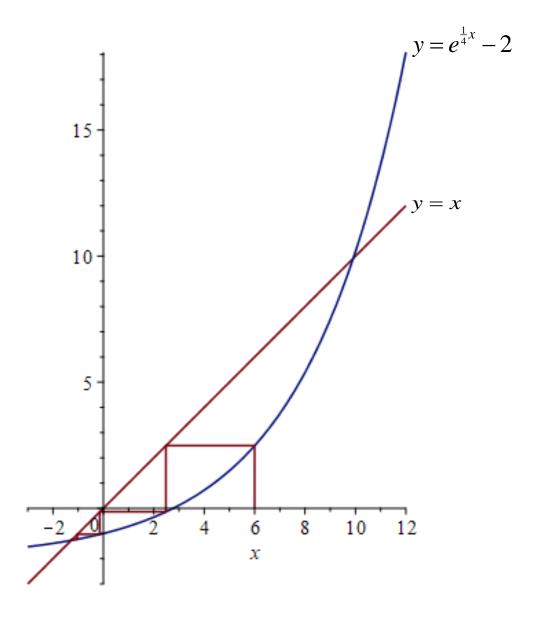
x_1	=	2
-------	---	---

1	
\mathcal{X}_1	2
x_2	-0.351278729
\mathcal{X}_3	-1.084073981
\mathcal{X}_4	-1.237397608
\mathcal{X}_{5}	-1.266075709
X_6	-1.271318781
\mathcal{X}_{7}	-1.272273287
\mathcal{X}_{8}	-1.272446921
\mathcal{X}_{9}	-1.272478502
x_{10}	-1.272484246
x_{11}	-1.272485291
x_{12}	-1.272485481
x_{13}	-1.272485516
X_{14}	-1.272485522
x_{15}	-1.272485523
x_{16}	-1.272485523



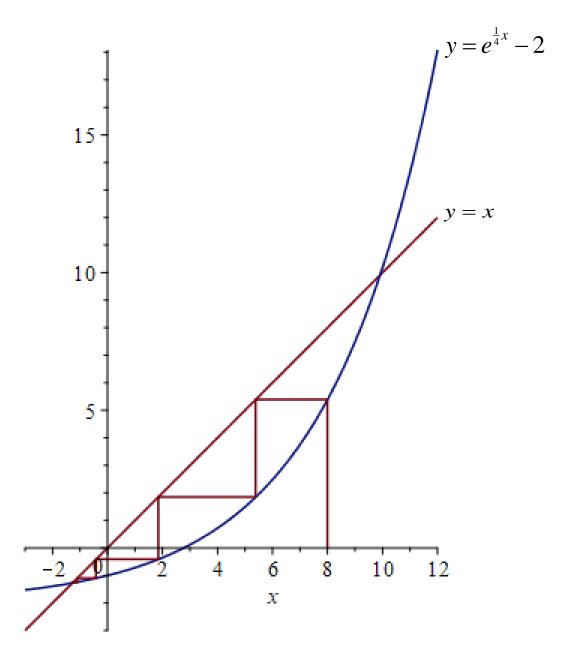
$$x_1 = 6$$

x_1	6
x_2	2.48168907
X_3	-0.140286827
X_4	-1.034463822
X_5	-1.227880506
x_6	-1.264327422
x_7	-1.271000225
\mathcal{X}_{8}	-1.272215329
X_9	-1.272436379
\mathcal{X}_{10}	-1.272476585
\mathcal{X}_{11}	-1.272483898
x_{12}	-1.272485228
\mathcal{X}_{13}	-1.272485469
\mathcal{X}_{14}	-1.272485513
X ₁₅	-1.272485521
<i>X</i> ₁₆	-1.272485523
\mathcal{X}_{17}	-1.272485523



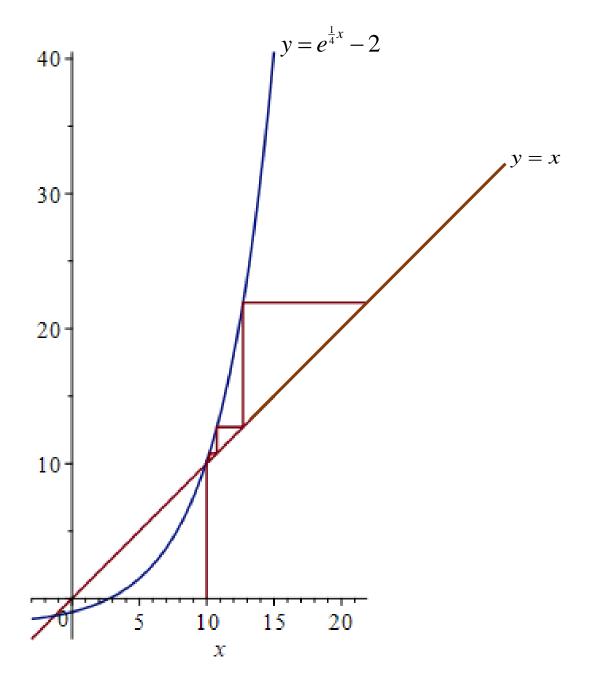
$$x_1 = 8$$

\mathcal{X}_1	8
x_2	5.389056099
X_3	1.846886134
X_4	-0.41319663
X_5	-1.098142864
X_6	-1.240075138
x_7	-1.266566821
X_8	-1.271408241
X_{0}	-1.272289562
\mathcal{X}_{10}	-1.272449881
X_{11}	-1.272479041
\mathcal{X}_{12}	-1.272484344
\mathcal{X}_{13}	-1.272485309
\mathcal{X}_{14}	-1.272485484
\mathcal{X}_{15}	-1.272485516
\mathcal{X}_{16}	-1.272485522
X_{17}	-1.272485523
x_{18}	-1.272485523



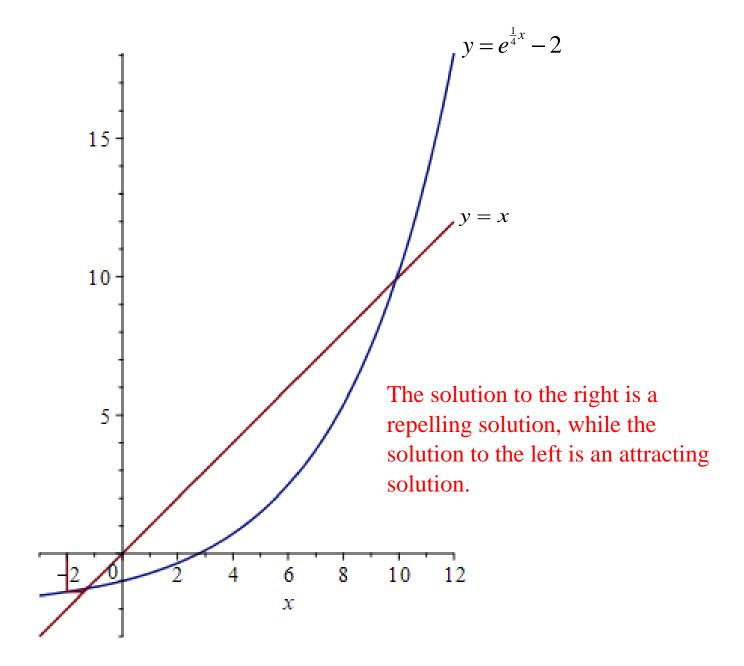
$$x_1 = 10$$

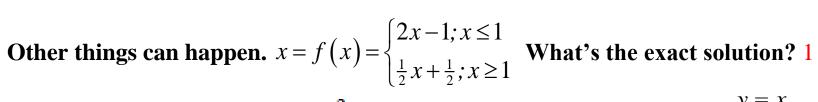
x_1	10
x_2	10.18249396
x_3	10.75117584
X_4	12.69921308
X_5	21.9221132
X_6	237.9734517
x_7	6.8808 x 10 ²⁵

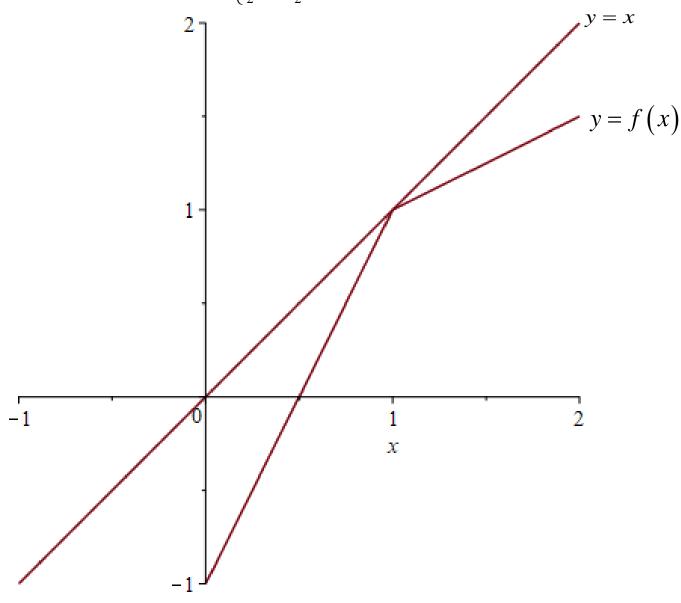


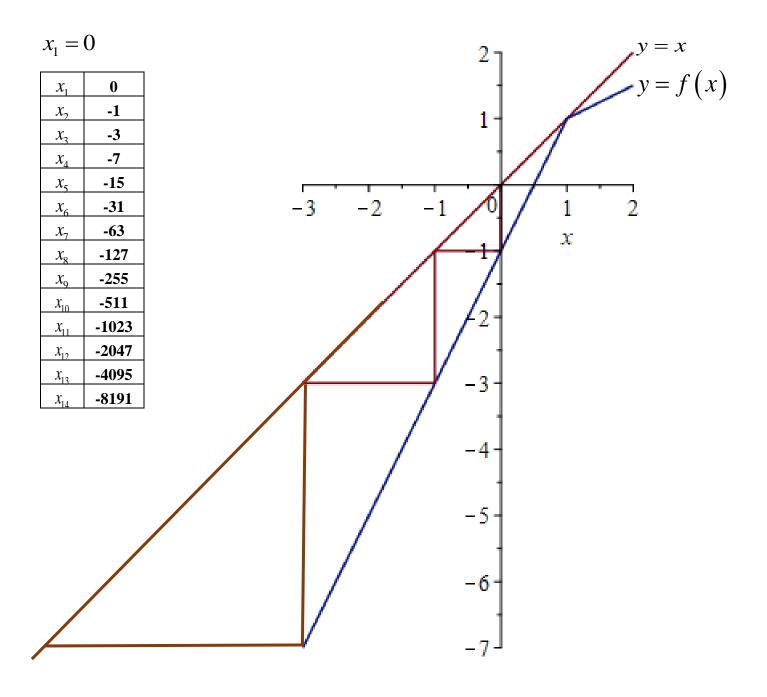
$$x_1 = -2$$

\mathcal{X}_{1}	-2
x_2	-1.39346934
X_3	-1.29416045
X_4	-1.27641707
X_5	-1.27320024
x_6	-1.2726155
x_7	-1.27250916
X_8	-1.27248982
X_{9}	-1.27248631
χ_{10}	-1.27248567
X_{11}	-1.27248555
x_{12}	-1.27248553
X_{13}	-1.27248552
X_{14}	-1.27248552



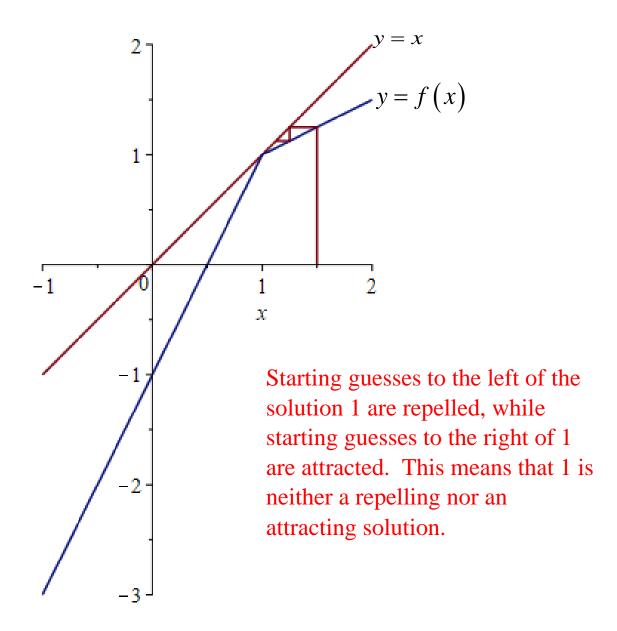


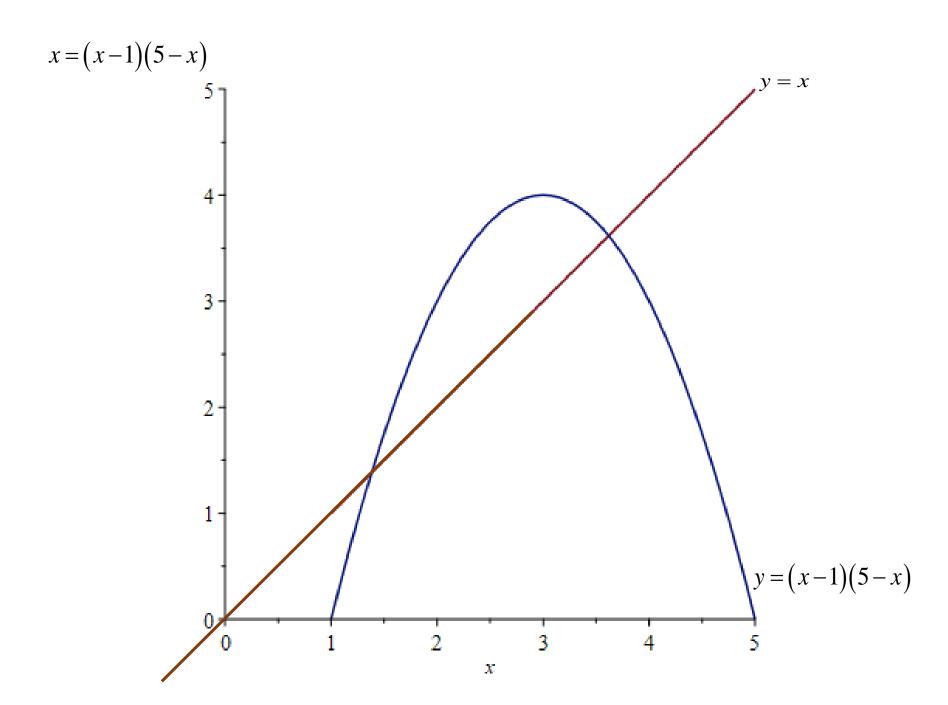




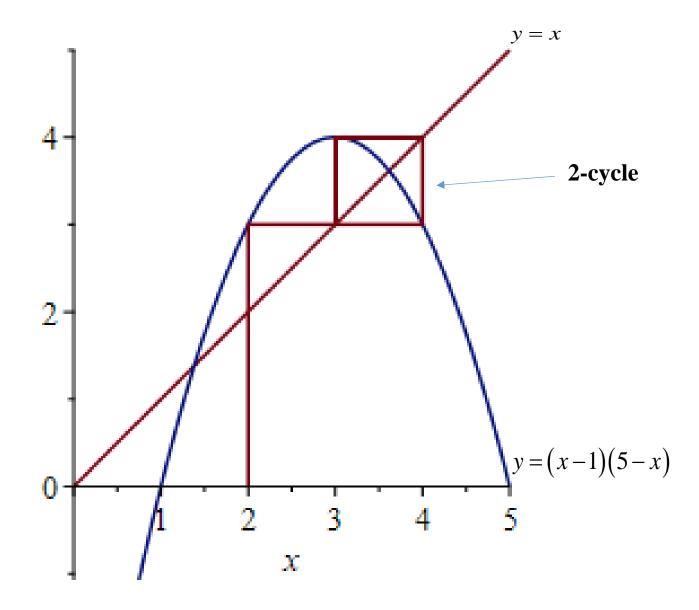
$$x_1 = 1.5$$

x_1	1.5				
x_2	1.25				
x_3	1.125				
X_{4}	1.0625				
X_5	1.03125				
x_6	1.015625				
x_7	1.0078125				
x_8	1.00390625				
X_{9}	1.001953125				

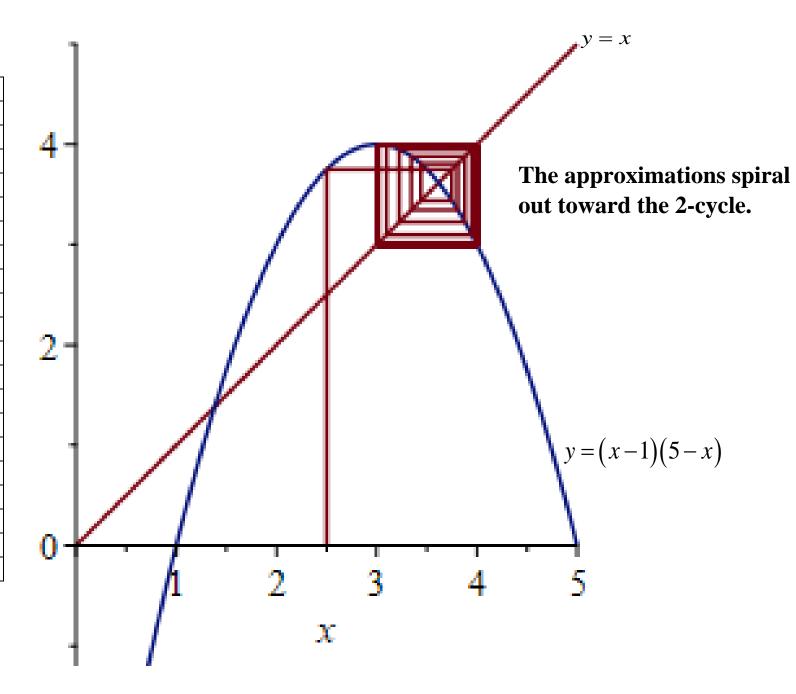




X_1	2
x_2	3
X_3	4
X_4	3
X_5	4
X_6	3
x_7	4
X_8	3
X_{0}	4



2.5
3.75
3.4375
3.80859375
3.34617614746093
3.88016207492910
3.22531472185650
3.94923327611473
3.09895618751650
3.99020767295220
3.01948876442659
3.99962018806113
3.00075947962064
3.99999942319071
3.00000115361826
3.99999999999867
3.000000000000266
4.000000000000000
3.000000000000000
4.000000000000000
3.000000000000000



$$x_1 = 3.5$$

		y = x
\mathcal{X}_1	3.5	
x_2	3.75	
x_3	3.4375	
\mathcal{X}_4	3.80859375	4-
X_5	3.34617614746093	The approximations spiral
\mathcal{X}_{6}	3.88016207492910	out toward the 2-cycle.
x_7	3.22531472185650	out toward the 2-cycle.
\mathcal{X}_{8}	3.94923327611473	
\mathcal{X}_{9}	3.09895618751650	
x_{10}	3.99020767295220	
x_{11}	3.01948876442659	
x_{12}	3.99962018806113	21 //
x_{13}	3.00075947962064	
X_{14}	3.99999942319071	
x_{15}	3.00000115361826	
x_{16}	3.9999999999867	1 //
<i>X</i> ₁₇	3.00000000000266	
x_{18}	4.000000000000000	y = (x-1)(5-x)
X_{19}	3.000000000000000	0
x_{20}	4.000000000000000	- 1
x_{21}	3.000000000000000	/ 1 2 3 4 5
		4 / X
		1 /

