Math 1314 Review 2

Find the slope of the line passing through the given pair of points.(1-3)

2.
$$(-2,2),(-2,1)$$

3.
$$(3,\frac{1}{4}),(5,\frac{1}{4})$$

Write an equation for the line that satisfies the given conditions.(4-7)

- **4.** Passes through (-3,2) with slope -6.
- **5.** Passes through (1,6),(-1,2).
- **6.** Passes through (4,-7) and parallel to the line with equation 3x + y 9 = 0.
- **7.** Passes through (-3,6) and perpendicular to the line with equation $y = \frac{1}{3}x + 4$.

Find the slope and y-intercept of the following lines.(8-10)

8.
$$y = \frac{2}{5}x - 1$$

9.
$$2x + 3y + 6 = 0$$

10.
$$3x - 9 = 0$$

Use the graph of the function f to graph the following functions. Use the graph you get to determine the domain and range of the given function.(11-16)

11.
$$g(x) = f(x+2) + 3$$

12.
$$h(x) = \frac{1}{2} f(x-1)$$

13.
$$j(x) = -f(2x)$$

14.
$$k(x) = 2f(\frac{1}{2}x)$$

15.
$$l(x) = -f(-x) - 1$$

16.
$$m(x) = |f(x)|$$

Start with the graph of the square root function, $f(x) = \sqrt{x}$, and use transformations to graph the given function. Use the graph you get to determine the domain and range of the given *function.*(17-20)

17.
$$g(x) = \sqrt{x+3}$$

18.
$$h(x) = \sqrt{3-x}$$

18.
$$h(x) = \sqrt{3-x}$$
 19. $j(x) = 2\sqrt{x+2}$ **20.** $k(x) = -\sqrt{x-2}$

20.
$$k(x) = -\sqrt{x-2}$$

Express the domain of the following functions using interval notation, if possible.(21-24)

21.
$$f(x) = \frac{4}{x-7}$$

22.
$$g(x) = \sqrt{8-2x}$$

23.
$$h(x) = \frac{\sqrt{x-2}}{x-5}$$

21.
$$f(x) = \frac{4}{x-7}$$
 22. $g(x) = \sqrt{8-2x}$ **23.** $h(x) = \frac{\sqrt{x-2}}{x-5}$ **24.** $j(x) = \sqrt{1-x} + \sqrt{x+5}$

25. For $f(x) = x^2 - 2x + 1$ and g(x) = x - 1, find $f + g, f - g, fg, \frac{f}{g}, f \circ g$, and $g \circ f$; simplify whenever possible.

26. Find a formula for $f^{-1}(x)$ for the following one-to-one functions.

a)
$$f(x) = 4x - 3$$

b)
$$f(x) = 8x^3 + 1$$

c)
$$f(x) = \frac{2}{x} + 5$$

27. Using the graphs of the functions f and g, which consist of line segments, answer the following:

Graph of f

Graph of g

a)
$$(f+g)(-1)$$

b)
$$(f-g)(1)$$

c)
$$(fg)(2)$$

$$\mathbf{d}) \left(\frac{f}{g} \right) (0$$

a)
$$(f+g)(-1)$$
 b) $(f-g)(1)$ **c)** $(fg)(2)$ **d)** $(f-g)(0)$ **e)** Solve $f(x)g(x)=0$.
f) $(f \circ g)(-1)$ **g)** $(g \circ f)(-1)$ **h)** $(f \circ g \circ f)(-3)$ **i)** Solve $(f \circ g)(x)=2$.

f)
$$(f \circ g)(-1)$$

$$\mathbf{g}) \left(g \circ f\right) \left(-1\right)$$

h)
$$(f \circ g \circ f)(-3)$$

i) Solve
$$(f \circ g)(x) = 2$$

Use the horizontal line test to determine if the graph is of a function which has an inverse function.(28-29)

28.

29.

30. Graph the piecewise defined function $f(x) = \begin{cases} x^2 - 1; x < -1 \\ \sqrt{x+1}; -1 \le x \le 3. \\ -x; x > 3 \end{cases}$