Math 1314 Review 3

- **1.** For the two points (-2,3) and (3,-9), find the distance between them, and the midpoint of the segment that joins them.
- **2.** Find an equation for the circle centered at (-2,4) with a radius of $\sqrt{8}$.
- **3.** Find the center and radius of the circle with equation $x^2 + y^2 - 4x + 2y - 4 = 0$. Use the graph to determine the domain and range of the relation.
- **4.** Find an equation for the circle which has (3,6) and (5,4) as endpoints of a diameter.
- 5. Graph the equations $(x-2)^2 + (y+3)^2 = 4$ y = x-3, and find their points of intersection.

Sketch the graphs of the following quadratic functions. Indicate the vertex, intercepts, and range of the function.

6.
$$f(x) = -(x+1)^2 + 4$$

7.
$$f(x) = x^2 - 2x - 3$$

8.
$$f(x) = 2x^2 - 4x - 6$$

Find the maximum or minimum value of the following quadratic functions.

9.
$$f(x) = -x^2 + 14x - 106$$

10.
$$f(x) = 2x^2 + 12x + 703$$

Find a formula for the quadratic function whose graph satisfies the given conditions.

- 11. The vertex is (-3,-4) and the graph passes through the point (1,4).
- 12. The graph passes through the points (1,4) and (3,4) and the maximum value is 6.
- 13. The graph passes through the points (0,4), (1,3), and (2,6). Sketch the graph of the following polynomial functions. Label the zeros and y-intercept.

14.
$$f(x) = -\frac{1}{125}(x-1)(x+2)^2(x+5)^3$$

15.
$$f(x) = x^3 - x^2 - 9x + 9$$

16.
$$f(x) = 4x - x^3$$

17.
$$f(x) = 3x^4 - 15x^3$$

- **18.** Use long division to find $(4x^4 + 6x^3 + 3x 1) \div (2x^2 + 1)$.
- **19.** Use synthetic division to find $(3x^4 + 11x^3 20x^2 + 7x + 35) \div (x + 5)$
- **20.** Given $f(x) = -2x^3 + 7x^2 9x + 3$, use the remainder theorem to find f(3).
- **21.** Solve the equation $x^3 17x + 4 = 0$, given that 4 is a solution. Use The Rational Zero Theorem to list all the possible rational zeros of the following polynomials.

22.
$$f(x) = x^4 - 6x^3 + 14x^2 - 14x + 5$$

22.
$$f(x) = x^4 - 6x^3 + 14x^2 - 14x + 5$$
 23. $f(x) = 3x^5 - 2x^4 - 15x^3 + 10x^2 + 12x - 8$

Use Descarte's Rule of Signs to determine the possible number of positive and negative zeros of the following polynomials.

24.
$$f(x) = 3x^4 - 2x^3 - 8x + 5$$

25.
$$f(x) = 2x^5 - 3x^3 - 5x^2 + 3x - 1$$

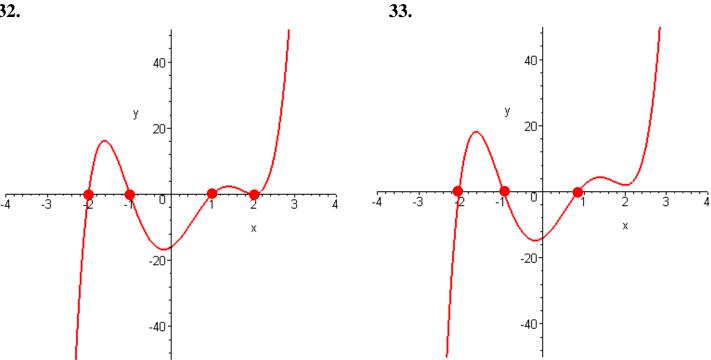
Find all the zeros of the following polynomials. Find all the zeros of the following poly **26.** $f(x) = x^3 + 3x^2 - 4$ **27.** $f(x) = 2x^3 + 9x^2 - 7x + 1$

26.
$$f(x) = x^3 + 3x^2 - 4$$

27.
$$f(x) = 2x^3 + 9x^2 - 7x + 1$$

28.
$$f(x) = 4x^4 + 7x^2 - 2$$

Find an nth degree polynomial function with real coefficients that satisfies the given conditions.


29.
$$n = 3$$
, 2 and $2 - 3i$ are zeros; $f(1) = -10$

30. n = 4, i is a zero and -3 is a zero of multiplicity 2; f(-1) = 16

31. Find all the zeros of $f(x) = 2x^4 + 3x^3 + 3x - 2$ and write the polynomial as a product of linear factors.

Graphs of fifth-degree polynomials are given. Tell the number of real zeros and the number of imaginary zeros.

32.

34. How many real zeros does the polynomial $f(x) = 2x^5 + x + 8$ have?

35. Find the value of k so that x-3 is a factor of $x^5-3x^4+6x^2-k$.

36. What is the remainder when $x^{999} + 500x^{998} + x^3 + 500x^2 + x + 499$ is divided by x + 500?

37. Is x-1 a factor of $x^{567} - 3x^{400} + x^9 + 2$?