
Math 2412 Review 3(answers) 

1. The decay of radium is modeled by ( ) 0

ktA t A e= .  If the half-life of radium is 1690 years, and 

you have 10 grams now, how much will be present in 50 years (rounded to three decimal 

places)? 

 

 

( )

( )1
21690

10

ln
5 10

1690

kt

k

A t e

e k

=

=  =
 

( )
( )1

2
ln

50
169050 10 9.7970153... 9.797 gramsA e


= = =  

 

 

 

 

2. The logistic growth model ( )
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 represents the population (in grams) of 

bacteria after t hours. 

 

 

a) What is the carrying capacity of the environment? 

1,000 grams  

 

 

 

 

b) What is the initial population size (rounded to two decimal places)? 

( ).439 0

1000 1000
30.00 grams

33.331 32.33e
−

= =
+

 

 

 

 

c) When will the population be 700 grams (rounded to two decimal places)? 
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3. The equation ( )21
3

2xx e= −  has two solutions.  In approximating them using the Method of 

Successive Approximation(see the graph), which solution is a repelling solution:  solution#1, 

solution#2, or both? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution #2 is the repelling solution.  

4. Use the method of finite differences to find a formula for generating the terms of the 

sequence 1,3,7,13,21,31,43,57, . 

 1  3  7  13  21  31  43  57 
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5. Write out the first five terms of the following sequences: 
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6. Use the following formulas: 

( )

( )( )

( )

1

2 2

1

2

3 3

1

1
1 2 3

2

1 2 1
1 4 9 16

6

1
1 8 27 64

2

n

k

n

k

n

k

n n
k n

n n n
k n

n n
k n

=

=

=

+
= + + + + =

+ +
= + + + + + =

+ 
= + + + + + =  

 







 

to find the exact values of the following series: 
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7. Consider the arithmetic sequence 5,2, 1, 4, 7, 10,− − − − . 

 

a) Write a formula that will generate the terms of the sequence. 

( )5 3 1 8 3na n n= − − = −  

 

 

 

b) Find the sum of the first 100 terms of this sequence. 
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8. Find the first term and the common difference for each of the following arithmetic sequences: 

 

a) 15th term is 0 and the 40th term is -50 
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b) 12th term is 4 and the 18th term is 28 
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9. Find x so that 2 ,3 2,5 3x x x+ +  are consecutive terms of an arithmetic sequence. 

( )3 2 2 5 3 3 2 2 2 1 1x x x x x x x+ − = + − +  + = +  =  

 

10. How many terms must be added in an arithmetic sequence whose first term is 78 and whose 

common difference is -4 to get a sum of 702? 
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11. Express the sum of the series 
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12. Consider the geometric sequence 2, 4,8, 16,32, 64,− − − . 

a) Write a formula that will generate the terms of the sequence. 
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b) Find the sum of the first 12 terms of this sequence. 
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13. If , 1, 4x x x+ +  are the first three terms of a geometric sequence, then what is the value of x? 
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14. Determine if the following geometric series converge or diverge.  If a series converges, 

write what it converges to. 
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15. Use Mathematical Induction to prove that ( ) ( )3 5 7 2 1 2n n n+ + + + + = +  for all natural 

numbers, n. 

For 1n = ,  the left-side is 3 and the right-side is ( )1 1 2 3 + = . 

Assume that the equation is true for n k= : 

( ) ( )3 5 7 2 1 2k k k+ + + + + = +  

And we’ll add ( ) ( )2 1 1 2 3k k+ + = +    to both sides to get 
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So it’s true for 1n k= + . 

Therefore,
 ( ) ( )3 5 7 2 1 2n n n+ + + + + = + for all natural numbers, n, by Mathematical 

Induction. 

16. Use Mathematical Induction to prove that 
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So it’s true for 1n k= + . 

Therefore,
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17. Use Mathematical Induction to prove that 2n n+   is divisible by 2 for all natural numbers n. 

 

For 1n = ,  21 1 2+ = , which is divisible by 2. 

 

Assume it’s true for n k= : 2k k+  is divisible by 2. 
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So it’s true for 1n k= + . 

 

Therefore,
 

2n n+  is divisible by 2 for all natural numbers, n, by Mathematical Induction.  

 

 


