#### Inverse Relations:

The inverse of a relation is the relation you get when you interchange the numbers

Reverse

in the ordered pairs.

$$R = \{(1,2),(2,2),(3,4)\}$$
 Domain? Range?

$$S = \{(1,1),(2,3),(3,4)\}$$
 Domain? Range?

Inverse of 
$$R = \{( , ), ( , ), ( , )\}$$
 Domain? Range?

Inverse of 
$$S = \{( , ), ( , ), ( , )\}$$
 Domain? Range?

# What's the connection between the graphs of relations and their inverses? Check them out.







When the relation f, is a function, and its inverse is also a function, then the function f is said to be invertible, and there is a special notation for its inverse function,  $f^{-1}$ .

Is R invertible? Is S invertible? Why/Why not?

One-to-one functions and the Horizontal Line Test.





Determine if the following functions are one-to-one, and therefore have an inverse function. Graph the inverse function, as well.





"You have to *study* for tests, dummy — you can't just put a memory stick in your ear!"

Bola 1

## Finding formulas for inverse functions:

Sometimes you can eyeball the function formula and find a formula for the inverse function:

**1.** 
$$f(x) = 2x$$

**2.** 
$$f(x) = x - 1$$

**3.** 
$$f(x) = 3x + 1$$



There is a definite procedure for finding a formula for an inverse function.

- **1. Replace** f(x) with y.
- 2. Interchange x and y.
- 3. Solve for y.
- **4. Replace y with**  $f^{-1}(x)$ .

### **Examples:**

**1.** 
$$f(x) = 3x + 1$$



"Algebra is like arithmetic, only X-rated."

**2.**  $f(x) = \sqrt{x-1}$ 



"I plan on becoming an automobile mechanic when I grow up. Would you settle for an estimate?

**3.**  $f(x) = x^3 - 1$ 



"I don't need to learn how to subtract. I'm going to work for the government."

**4.** 
$$f(x) = \frac{x+4}{x-3}$$



"Yes, yes, I know that, Sidney ... everybody knows that!... But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

**5.**  $f(x) = x^2; x \ge 0$ 



<sup>&</sup>quot;True, we have encouraged you to use your imagination, but not in math."

#### **Composition Property of Inverse Functions:**

 $(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$  for all x in the domain of  $f^{-1}(x)$ 

#### And

 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$  for all x in the domain of f(x).

#### **Example:**

For 
$$f = \{(1,2),(2,3)\}$$
 and  $f^{-1} = \{(2,1),(3,2)\}$ 

$$f(f^{-1}(2)) =$$
 and  $f(f^{-1}(3)) =$ 

$$f^{-1}(f(1)) =$$
 and  $f^{-1}(f(2)) =$ 

Are the functions f(x) = 2x - 1 and  $g(x) = \frac{1}{2}x + 1$  inverses?



"I don't remember liking them in the first place."

Are the functions  $f(x) = \sqrt{x}$  and  $g(x) = x^2$  inverses?