Polynomial Division:

Long Division:

$$(6x^2+13x+9)\div(2x+1)$$

$$2x+1)6x^2+13x+9$$

"We've been dividing all week! When do we get to conquer?!"

"Isn't there enough division in this country?!"

$$(2x^4-3x^3-3x^2+9x+2)\div(x^2-2x+1)$$

$$x^{2}-2x+1)2x^{4}-3x^{3}-3x^{2}+9x+2$$

$$(8x^2-2x-15)\div(4x+5)$$

$$4x+5)8x^2-2x-15$$

"Division is just like addition except you have to use a different button on the calculator."

Synthetic Division:

Only works if you're dividing by $(x \pm c)$.

Examples:

$$(2x^2+x-16)\div(x-2)$$

$$(3x^2-2x+5)\div(x-3)$$

When cells divide

$$(x^2-8x-12)\div(x+4)$$

$$(2x^2+8)\div(x+3)$$

Repeat the previous 2 steps and separate the last term as remainder.

$$(x^3-2x^2+5x-1)\div(x-5)$$

Remainder Theorem:

When the polynomial function f(x) is divided by (x-c), the remainder is equal to

$$f(c)$$
.

Here's why: f(x) = (x-c)q(x) + r, so

$$f(c) = (c-c)q(c)+r$$
$$= 0 \cdot q(c)+r$$
$$= r$$

Examples:

1. Use synthetic division along with the Remainder Theorem to find the value of f(2) for the polynomial function $f(x) = 3x^3 - 2x^2 + x - 3$.

2. Use synthetic division along with the Remainder Theorem to find the value of f(-3) for the polynomial function $f(x) = 5x^2 - 2x^3 + x - 4$.

"Can I carry the remainder over to the next question?"

Factor Theorem:

For the polynomial function f(x), if f(c) = 0, then (x-c) is a factor of f(x).

Here's why:

f(x) = (x-c)q(x)+r, so if f(c) = 0, then r = 0, and so (x-c) is a factor of f(x).

Examples:

1. Use synthetic division and the Factor Theorem to show that x-3 is a factor of the polynomial function $f(x) = x^3 - 3x^2 + x - 3$, and then find all of the zeros of the polynomial function.

2. Use synthetic division and the Factor Theorem to show that x + 2 is a factor of the polynomial function $f(x) = 2x^3 + 3x^2 - 5x - 6$, and then find all of the zeros of the polynomial function.

3. Find the value of k so that x-1 is a factor of $x^5-4x^3+2x^2-3x+k$.

The Birth of a Right Triangle