Exponential Functions:

A function of the form $f(x) = b^x$ with b > 0 and $b \ne 1$ is a called an exponential function with base b.

The bases naturally divide into two categories:

b > 1

And

0 < b < 1

EXPONENTIAL FUNCTIONS

Graphing

EXPONENTIAL FUNCTIONS $f(x) = a(b)^{x-h} + k$ Example: $f(x) = 3(2)^{x-4} - 1$ Forent function & table $f(x) = 3(2)^{x-4}$ The porent function & table f(x

Domain: $\left(-\infty,\infty\right)$

Horizontal Asymptote: y = 0 to the left

Range: $(0, \infty)$

Increasing: $(-\infty,\infty)$

MATHEMATICS

is not about numbers, equations, computations, or algorithms: it is about UNDERSTANDING.

For 0 < b < 1,

Domain: $(-\infty, \infty)$

Horizontal Asymptote: y = 0 to the right

Range: $(0, \infty)$

Decreasing: $(-\infty,\infty)$

Transformations of Exponential Functions:

1.
$$f(x) = -2^x$$

Domain:

Range:

4.
$$f(x) = \left(\frac{2}{5}\right)^{x+2} + 3$$

Domain:

Range:

An Important Exponential Property:

If
$$b^x = b^y$$
, then $x = y$.

What did the Exponential Equation say to the Linear Equation? Real graphs have curves.

Solve the following exponential equations:

1.
$$5^x = 5^{-6}$$

2.
$$3^{-x} = 81$$

3.
$$4^{x^2} = 2^x$$

4.
$$9^{-x+15} = 27^x$$

5.
$$5^{x^2+8} = 125^{2x}$$