Transformations of the Graphs of Functions:

Vertical Shift

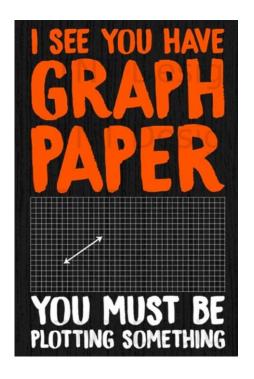
Horizontal Shift

Reflection about the *x*-axis

Reflection about the *y*-axis

Vertical Stretch/Compress

Horizontal Stretch/Compress



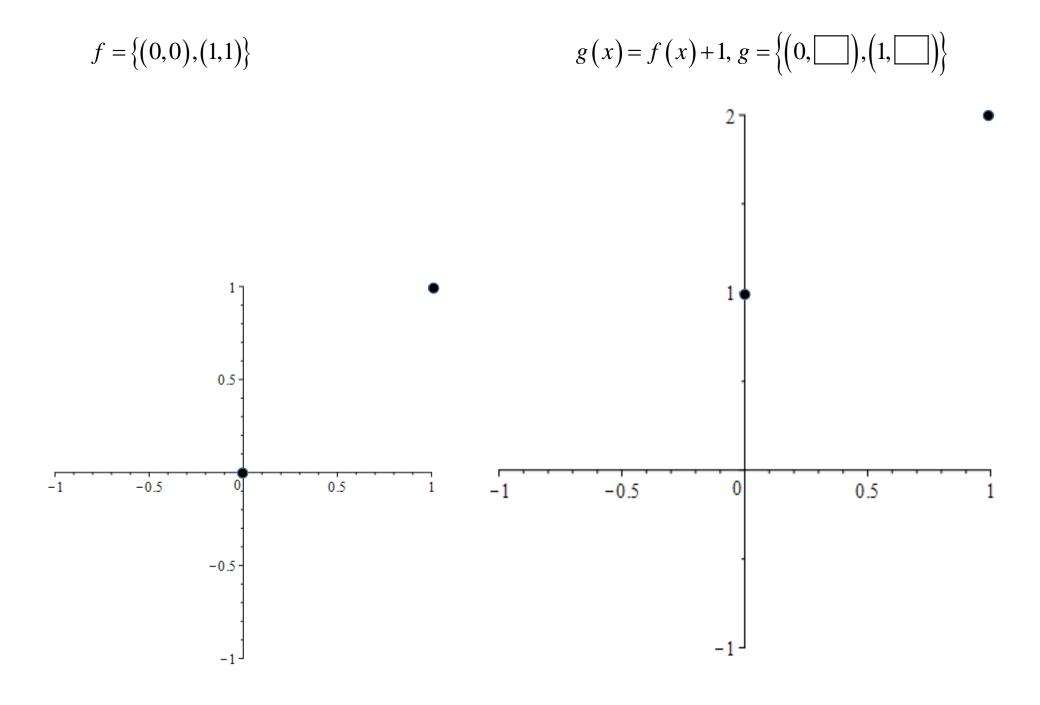
Vertical Shift:

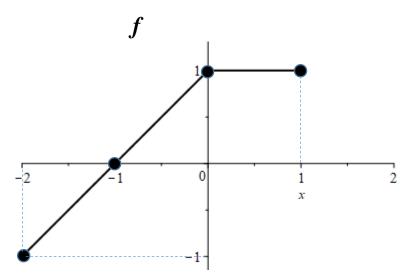
For c > 0,

The graph of g(x) = f(x) + c, is the graph of f(x) shifted c units up.

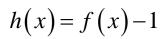
The graph of g(x) = f(x) - c, is the graph of f(x) shifted c units down.

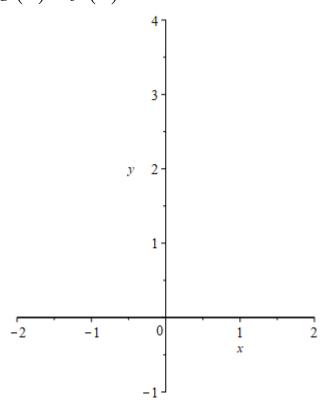
For a vertical shift, the *y*-coordinates change, but the *x*-coordinates remain the same.

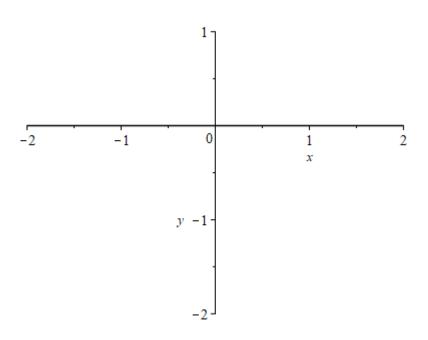




$$g(x) = f(x) + 2$$







Horizontal Shift:

For c > 0,

The graph of g(x) = f(x-c), is the graph of f(x) shifted c units to the right.

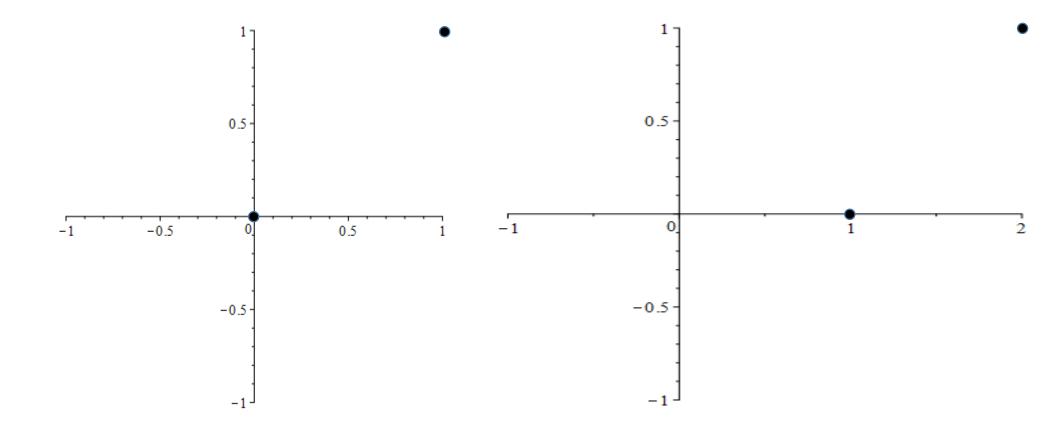
The graph of g(x) = f(x+c), is the graph of f(x) shifted c units to the left.

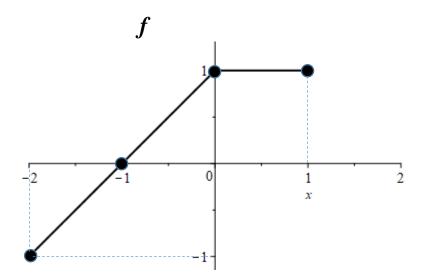
For a horizontal shift, the x-coordinates change, but the y-coordinates remain the

same.

$$f = \{(0,0),(1,1)\}$$

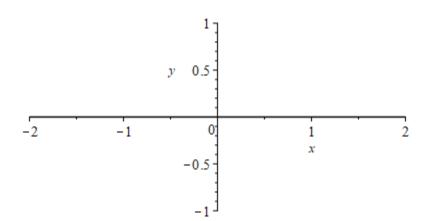
$$g(x) = f(x-1), g = \{([],0),([],1)\}$$

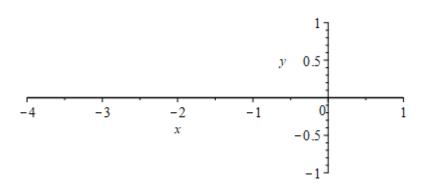




$$g(x) = f(x-1)$$

$$h(x) = f(x+2)$$

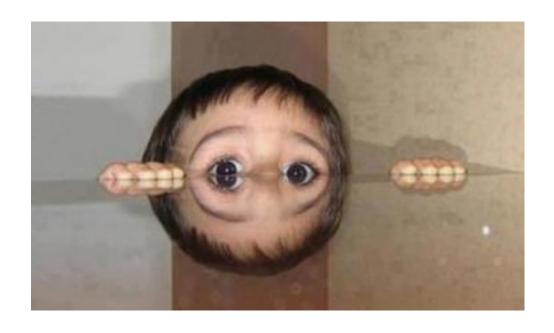


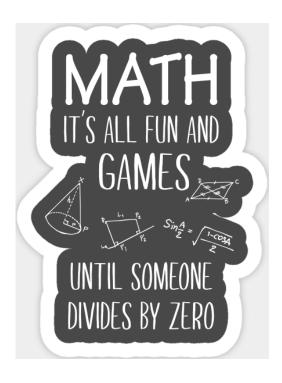


Reflection about the x-axis:

The graph of g(x) = -f(x) is the graph of f(x) reflected about the x-axis.

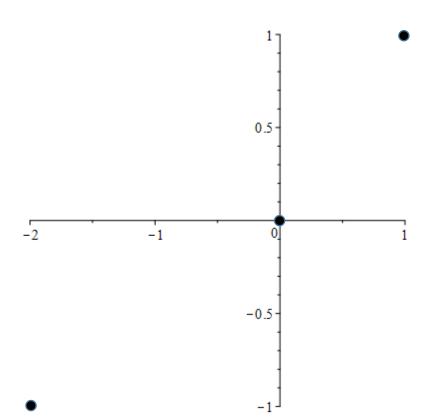
For reflection about the *x*-axis, the non-zero *y*-coordinates change, but the *x*-coordinates remain the same.

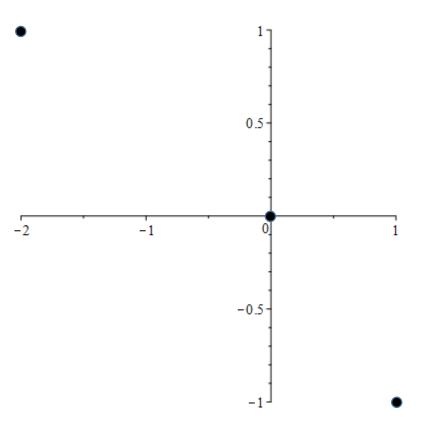




$$f = \{(0,0),(1,1),(-2,-1)\}$$

$$g(x) = -f(x), g = \{(0, \square), (1, \square), (-2, \square)\}$$





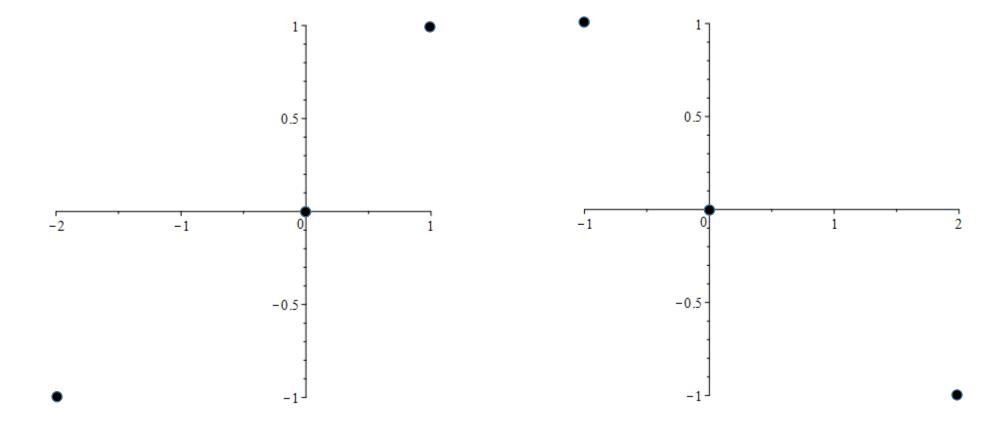
Reflection about the y-axis:

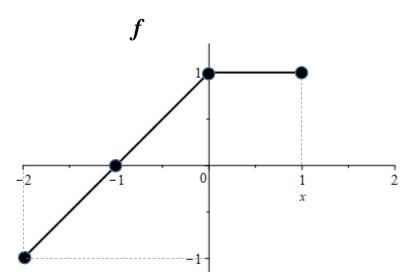
The graph of g(x) = f(-x) is the graph of f(x) reflected about the y-axis.

For reflection about the y-axis, the non-zero x-coordinates change, but the y-coordinates remain the same.

$$f = \{(0,0),(1,1),(-2,-1)\}$$

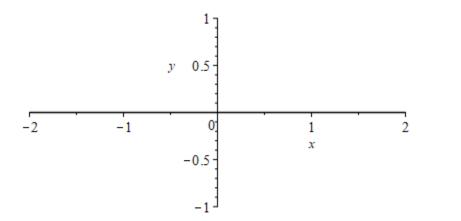
$$g(x) = f(-x), g = \{([],0),([],1),([],-1)\}$$

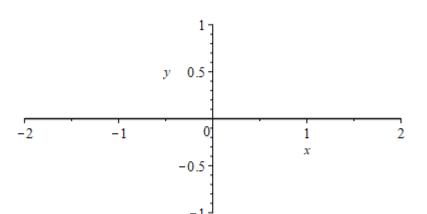




$$g(x) = -f(x)$$

$$h(x) = f(-x)$$



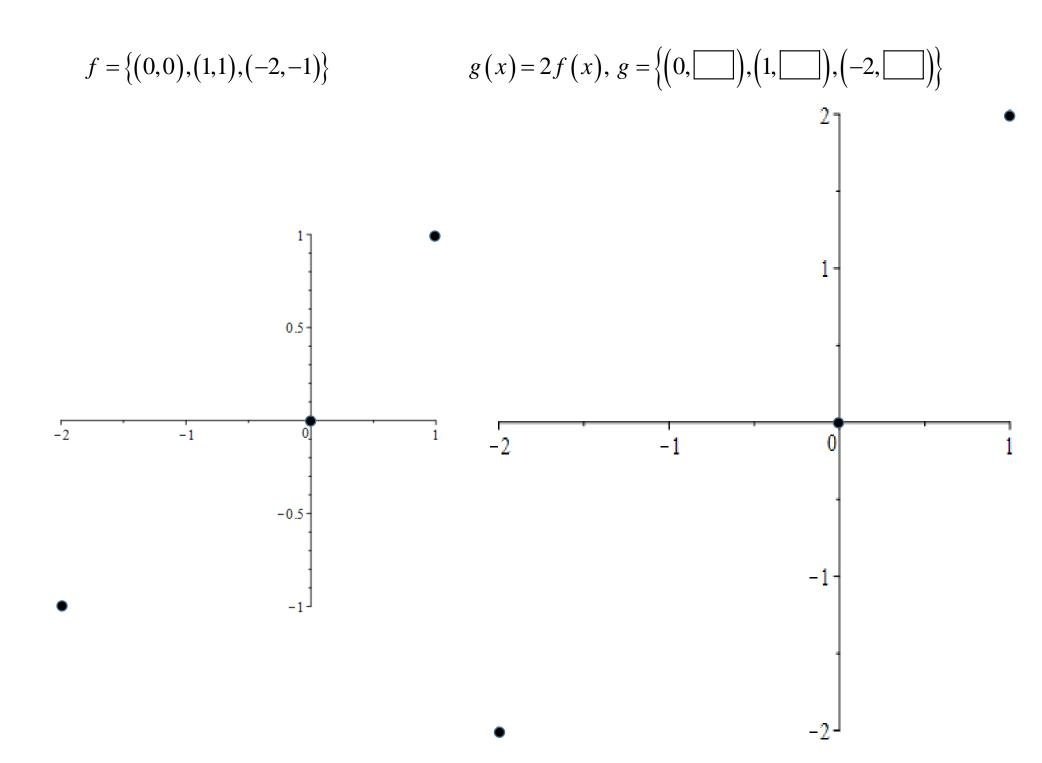


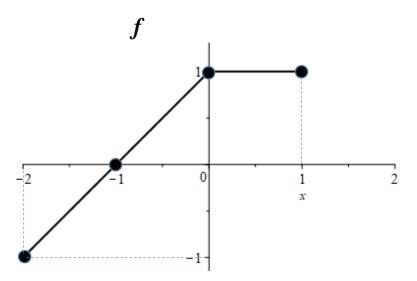
Vertical Stretch/Compress:

For c > 1, the graph of g(x) = cf(x) is the graph of f(x) <u>stretched</u> away from the x-axis by a factor of c.

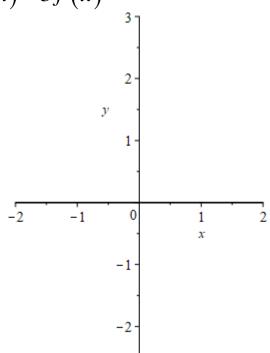
For 0 < c < 1, the graph of g(x) = cf(x) is the graph of f(x) <u>compressed</u> toward the x-axis by a factor of c.

For a vertical stretch/compress, the non-zero y-coordinates change, but the x-coordinates remain the same.

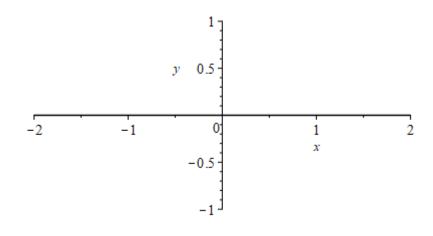




$$g(x) = 3f(x)$$



$$h(x) = \frac{1}{2} f(x)$$

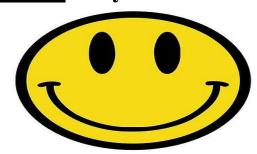


Horizontal Stretch/Compress:

For c > 1, the graph of g(x) = f(cx) is the graph of f(x) <u>compressed</u> toward the y-axis by a factor of $\frac{1}{c}$.

For 0 < c < 1, the graph of g(x) = f(cx) is the graph of f(x) stretched away from

the y-axis by a factor of $\frac{1}{c}$.

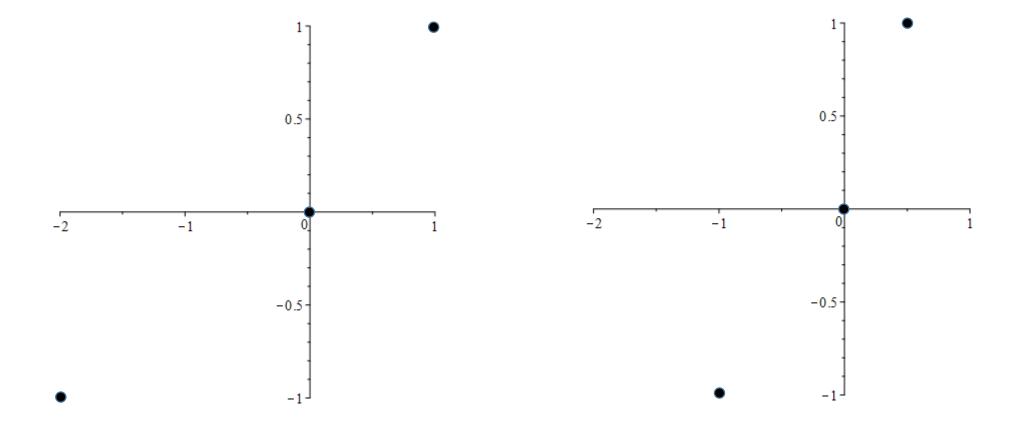


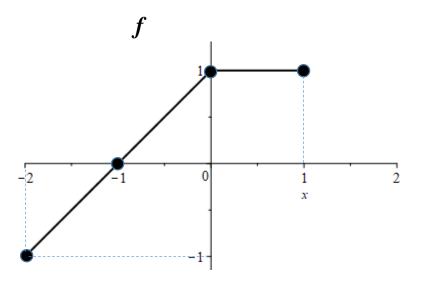
For a horizontal stretch/compress, the non-zero x-coordinates change, but the y-

coordinates remain the same.

$$f = \{(0,0),(1,1),(-2,-1)\}$$

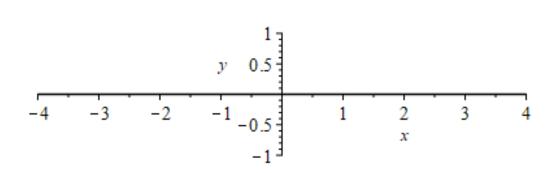
$$g(x) = f(2x), g = \{([], 0), ([], 1), ([], -1)\}$$

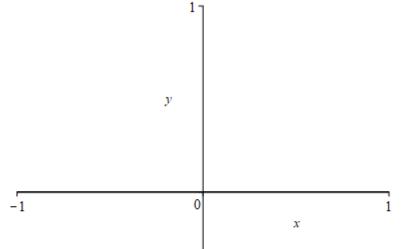


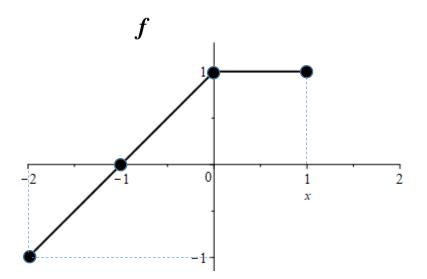


$$g\left(x\right) = f\left(\frac{1}{2}x\right)$$

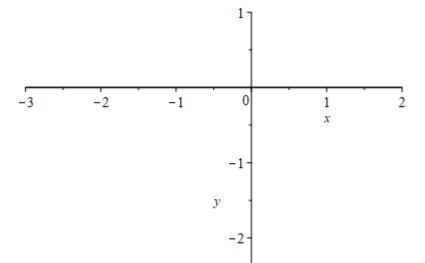
$$h(x) = f(3x)$$



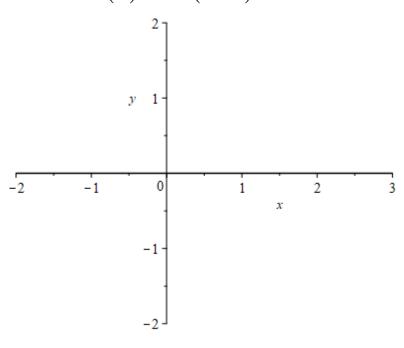


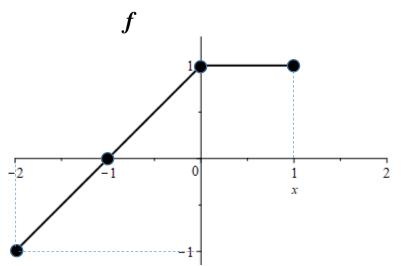


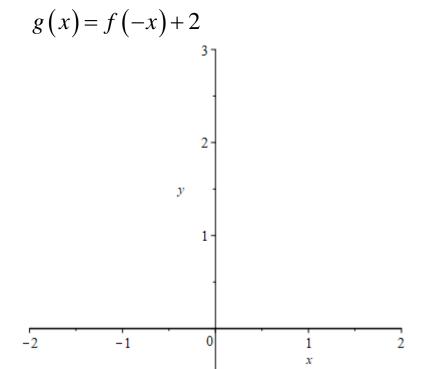
$$g(x) = f(x+1) - 2$$

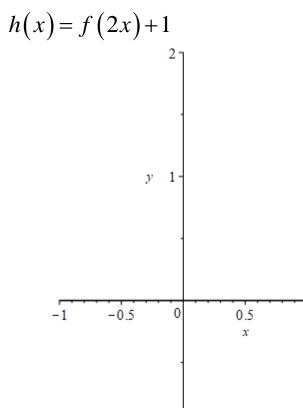


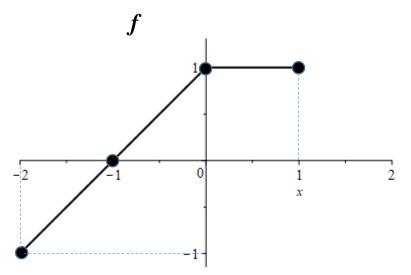
$$h(x) = 2f(x-1)$$

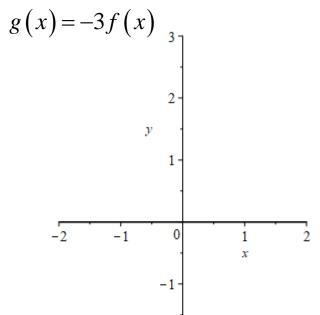




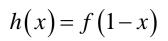


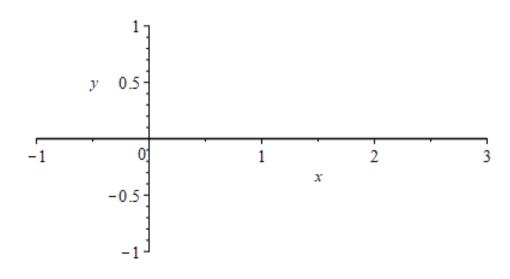


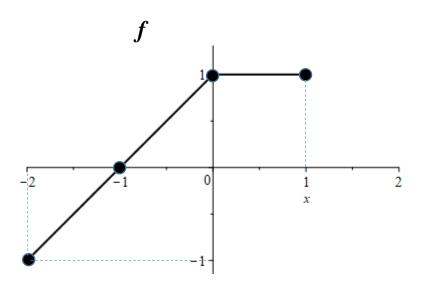




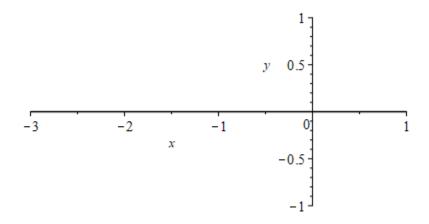
-2-







$$g(x) = f(2x+4)$$



MATH.

The only place where people can buy 64 Watermelons and no one wonders why...