More Terminology and Notation:

Plane: It's an infinitely large flat surface.

<u>Line Segment:</u> It's the straight arrangement of points that connect two points called the endpoints.

<u>Line:</u> It's a straight arrangement of points that extends indefinitely in opposite directions.

Collinear Points: Points that lie on the same line/line segment are called collinear points.

Coplanar Points: Points that lie on the same plane are called coplanar points.

Concurrent Lines: Three or more lines that contain the same point are called concurrent.

Midpoint: It's the point on a line segment that is equidistant from the endpoints.

Ray: It's a straight arrangement of points that extends indefinitely in one direction

from a point called its endpoint.

 \overrightarrow{AB}

Which set of points are collinear?

D,G,H

H,C,B

E,J,B

A,D,C,B

Which set of points are coplanar?

A,I,D,G

A,H,E,F

A,B,C,D

B,G,H,J

Convex and Concave Regions: A region is convex if for every pair of points in the region, the line segment connecting them is also in the region. A region is concave if there is at least one pair of points in the region where the connecting line segment leaves the region.

Convex:

Concave:

Convex or Concave?

concave

Angle: It's the union of two line segments with a common endpoint or the union of two rays with a common endpoint. The common endpoint is called its vertex, and the line segments or rays are called its sides.

Interior/Exterior of an Angle: An angle that is formed by two rays divides a plane into three parts: the angle, the interior of the angle, and the exterior of the angle.

Adjacent Angles: They are two angles that share a vertex, have a common side, but whose interiors don't intersect.

 $\angle DAB$ and $\angle BAC$ are adjacent angles.

<u>Acute Angle:</u> An angle whose degree measure is less than 90°.

Right Angle: An angle whose degree measure is equal to 90° .

$$m(\angle BAC) = 90^{\circ}$$

Obtuse Angle: An angle whose degree measure is greater than 90° but less than 180° .

$$90^{\circ} < m(\angle BAC) < 180^{\circ}$$

Straight Angle: An angle whose degree measure is equal to 180°. Interior and exterior are convex.

$$m(\angle BAC) = 180^{\circ}$$

Reflex Angle: An angle whose degree measure is greater than 180° but less than 360° . Interior is concave, and the exterior is convex.

$$180^{\circ} < m(\angle BAC) < 360^{\circ}$$

<u>Vertical Angles:</u> When two lines intersect, angles are formed. The pairs of non-adjacent angles are called vertical angles.

 $\angle 1$ and $\angle 3$ are vertical angles.

 $\angle 2$ and $\angle 4$ are vertical angles.

<u>Vertical angles are congruent.</u> Show why $\angle 1$ and $\angle 3$ are congruent.

Complementary Angles: If the measures of two angles add up to 90°, then the two angles are complementary.

 $\angle BAD$ and $\angle DAC$ are complementary angles.

Supplementary Angles: If the measures of two angles add up to 180°, then the two angles are supplementary.

GOOD TODAY.

AS ARE YOU MY FRIEND.

 $\angle BAD$ and $\angle DAC$ are supplementary angles.

Find the value of x.

Two Parallel Lines Intersected by a Transversal:

Corresponding Angles: Pairs of angles that match up.

 $\angle 1$ and $\angle 5$ are corresponding angles.

 $\angle 2$ and $\angle 6$ are corresponding angles.

 $\angle 3$ and $\angle 7$ are corresponding angles.

 $\angle 4$ and $\angle 8$ are corresponding angles.

Corresponding angles are congruent.

<u>Alternate Interior Angles:</u> Pairs of non-adjacent angles between the parallel lines but on opposite sides of the transversal.

 $\angle 3$ and $\angle 5$ are alternate interior angles.

 $\angle 4$ and $\angle 6$ are alternate interior angles.

Alternate interior angles are congruent. Show why $\angle 3$ and $\angle 5$ are congruent.

Complete the labelling of the angle measures in the following pair of parallel lines cut by a transversal.

The sum of the angle measures in a triangle:

So
$$m(\angle 1) + m(\angle 2) + m(\angle 3) =$$

Find the missing angle measure in the following triangle.

More on Triangles:

Acute Triangle: It's a triangle in which all three angles are acute.

Obtuse Triangle: It's a triangle with one angle larger than 90° .

Equiangular Triangle: It's a triangle with all three angles of equal measure.

What is the measure of each of the angles in an equiangular triangle?

In the Venn diagram below, draw a representative figure in each of the three regions, if possible.

