Simple Closed Curve:

It's a curve in the plane that can be traced with the same starting and stopping point without crossing or retracing any part of the curve.

Polygon:

It's a simple closed curve made up of line segments.

The Angle Sum of a Polygon:

The angle sum of a polygon can be determined by dissecting it into triangles and using the angle sum of a triangle.

Find the missing angle measure in the following polygons.

Regular Polygon/Regular *n*-gon:

It's a polygon with all sides of the same length and all vertex angles of the same measure. The n refers to the number of sides, and all of them enclose a convex region.

What do you call a nine-sided polygon that wishes to remain anonymous?

anonagon.

The Angles of a Regular n-gon:

Central Angle:

Since it takes *n* central angles to get 360°, central angle = $\frac{360^{\circ}}{n}$.

Vertex Angle:

Since a central angle and a vertex angle give 180° , vertex angle $= 180^{\circ} - \frac{360^{\circ}}{n}$, or

vertex angle =
$$\frac{180^{\circ} n - 360^{\circ}}{n} = \frac{(n-2)180^{\circ}}{n}.$$

Exterior Angle:

Since vertex angle and exterior angle give 180° , and vertex angle and central angle give 180° , then exterior angle equals central angle.

exterior angle =
$$\frac{360^{\circ}}{n}$$

Angle Sum of a Regular *n*-gon:

Since the measure of a vertex angle of a regular *n*-gon is $\frac{(n-2)180^{\circ}}{n}$, and there are *n* of them in the regular *n*-gon, the angle sum must be $n \cdot \frac{(n-2)180^{\circ}}{n} = (n-2)180^{\circ}$.

n	central angle $\frac{360^{\circ}}{n}$	vertex angle $180^{\circ} - \frac{360^{\circ}}{n}$	exterior angle $\frac{360^{\circ}}{n}$	angle sum $(n-2)180^{\circ}$
3	120°	60°	120°	180°
4				
5				
6				

