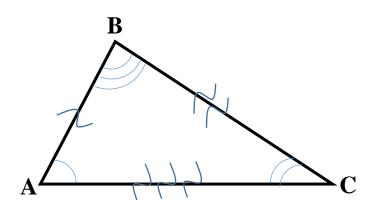
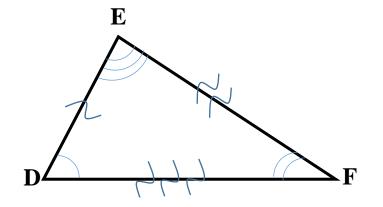


Similarity of Triangles:

Two triangles are similar if the corresponding angles are congruent, and the corresponding sides are proportional.





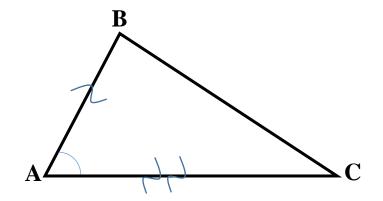
$$\triangle ABC \sim \triangle DEF$$

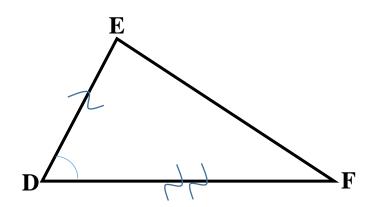
Congruency: $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$

Proportionality:
$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}}$$

When is a fewer number of congruences/proportionalities enough to conclude that two triangles are similar?

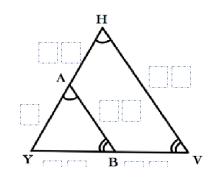
Side-Angle-Side(SAS) Similarity:

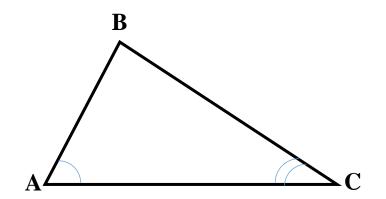


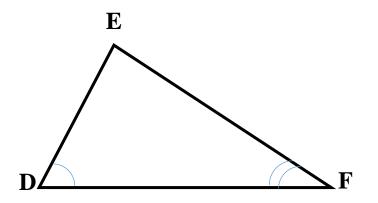


 $\triangle ABC \sim \triangle DEF$

Angle-Angle(AA) Similarity:

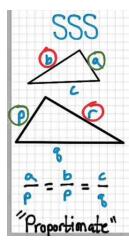


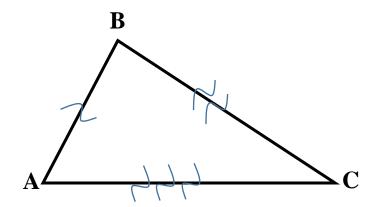


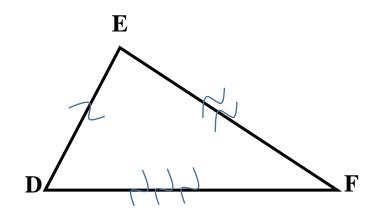


 $\triangle ABC \sim \triangle DEF$

Side-Side-Side(SSS) Similarity:

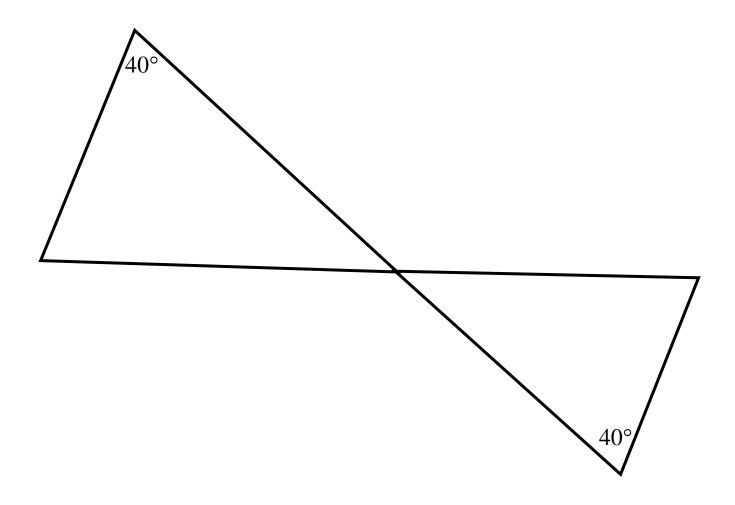


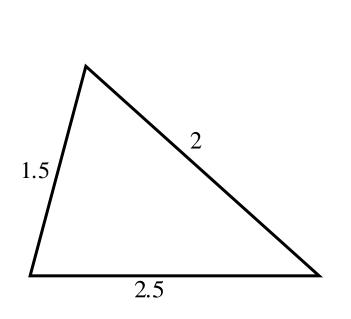


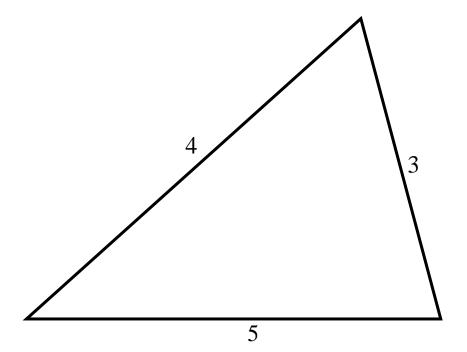


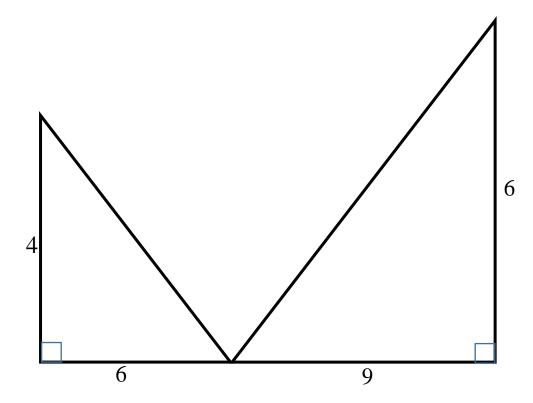
 $\triangle ABC \sim \triangle DEF$

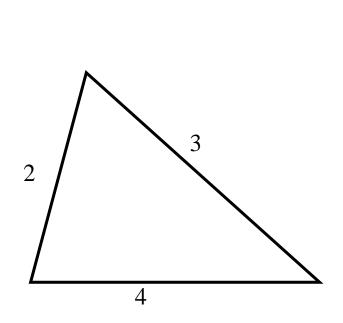
Determine if the following pairs of triangles are similar:

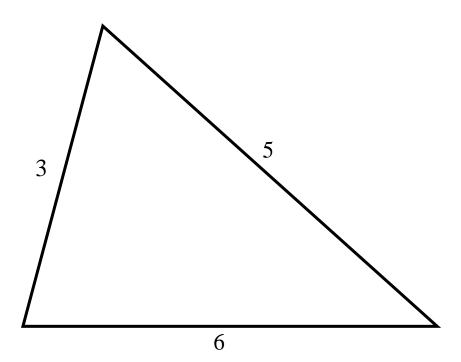




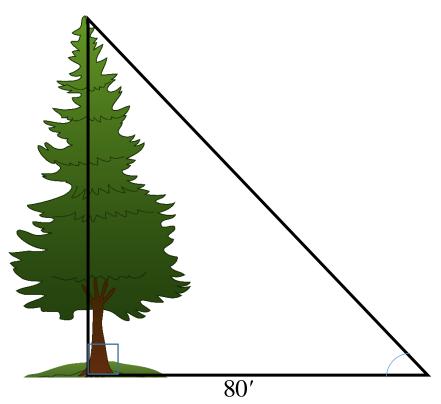


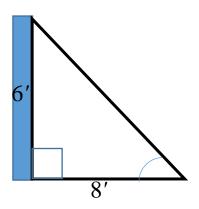






How tall is the tree?





Find the missing side measurements in ΔDEF .

