

Similarity of Triangles:

Two triangles are similar if the corresponding angles are congruent, and the corresponding sides are proportional.

$$\triangle ABC \sim \triangle DEF$$

Congruency: $\angle A \cong \angle D$, $\angle B \cong \angle E$, $\angle C \cong \angle F$

Proportionality:
$$\frac{\overline{AB}}{\overline{DE}} = \frac{\overline{BC}}{\overline{EF}} = \frac{\overline{AC}}{\overline{DF}}$$

When is a fewer number of congruences/proportionalities enough to conclude that two triangles are similar?

Side-Angle-Side(SAS) Similarity:

 $\triangle ABC \sim \triangle DEF$

Angle-Angle(AA) Similarity:

 $\triangle ABC \sim \triangle DEF$

Side-Side-Side(SSS) Similarity:

 $\triangle ABC \sim \triangle DEF$

Determine if the following pairs of triangles are similar:

How tall is the tree?

Find the missing side measurements in ΔDEF .

