Review of Relations and Functions:

$$R = \{(1,2),(2,4),(3,5)\}$$

$$S = \{(1,2),(1,3),(2,6)\}$$

Domain of *R*?

Domain of *S*?

Range of R?

Range of *S*?

Is *R* a function? Explain.

Is *S* a function? Explain.

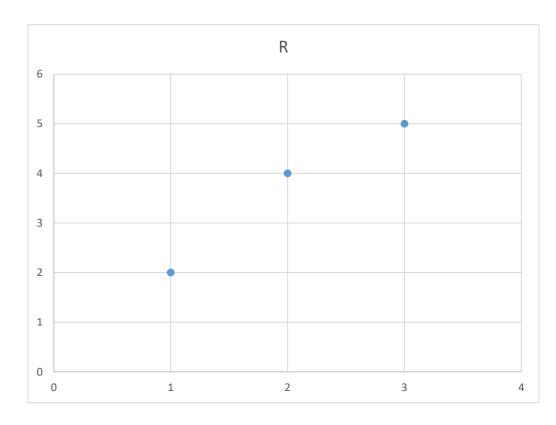
Relations and Functions from equations: The equation defines y as a function of x if when each domain value is substituted in for x, there is a unique value for y that makes the equation true.

$$x + y = 6 x = y^2$$

$$2x^2 + 3y^2 = 0$$

$$|y| = x$$

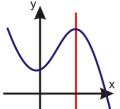
Relations and Functions from graphs:

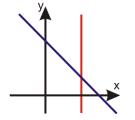


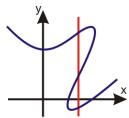
Domain?(*x-coordinates*)

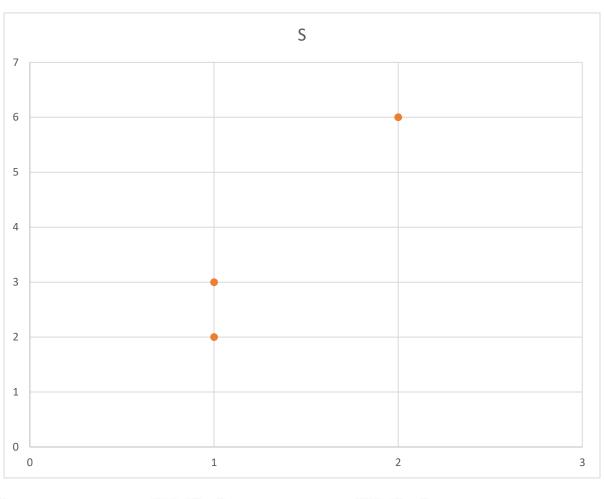
Range? (y-coordinates)

Function?(vertical line test)





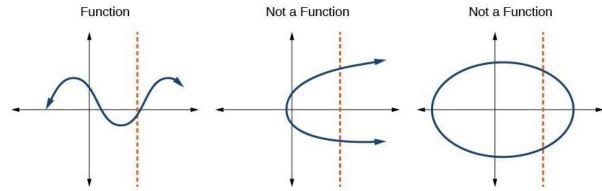


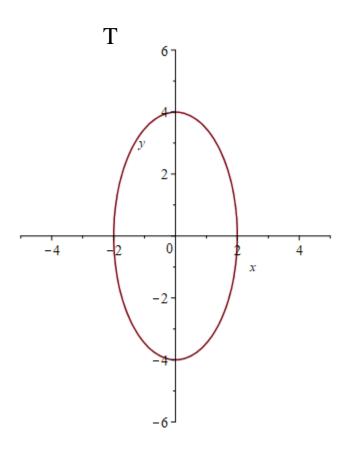


Domain?

Range?

Function?

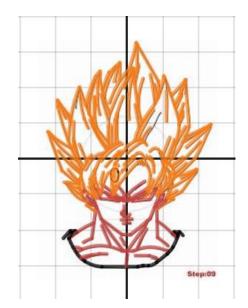


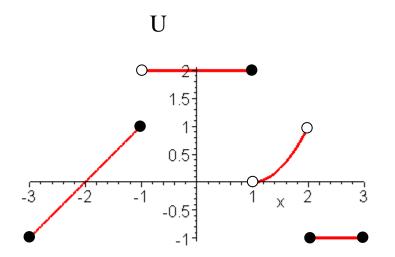


Domain?(left to right)

Range?(bottom to top)

Function?(vertical line test)





Domain?

Range?

Function?

Function Notation

Function Notation and Function Evaluation:

$$f(x) = x^{2} - 1$$

$$f(-1)$$

$$f(0)$$

$$f(-1) = (-1)^{2} - 1 =$$

$$f\left(2\right)$$
 $f\left(\frac{1}{2}\right)$

$$f(x) = 5x + 6$$
input output

$$g(x) = \begin{cases} x & ; x \le -1 \\ 2x+1; x > -1 \end{cases}$$

$$f(x) = \begin{cases} \frac{1}{2x+4} & x < 2 \\ x^2 - 1 & -2 \le x \le 2 \end{cases}$$

$$f(x) = \begin{cases} x^2 - 1 & x > 2 \\ -1 & x > 2 \end{cases}$$

$$g(-2)$$

Which formula?

Is
$$-2 \le -1$$
, or is $-2 > -1$?
 $g(-2) = -2$

$$g(-1)$$

Which formula?

Is
$$-1 \le -1$$
, or is $-1 > -1$?

Which formula?

Is $1 \le -1$, or is 1 > -1?

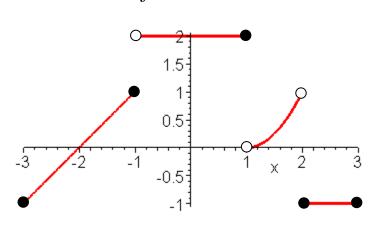
$$g\left(\frac{1}{2}\right)$$

Which formula?

Is
$$\frac{1}{2} \le -1$$
, or is $\frac{1}{2} > -1$?

Function values from graphs:

f

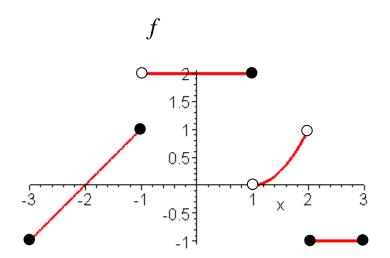


$$f(-3) f(-1)$$

What is the *y*-coordinate of the point on the graph with *x*-coordinate -3?

$$f(0) f(1)$$

$$f(-4)$$



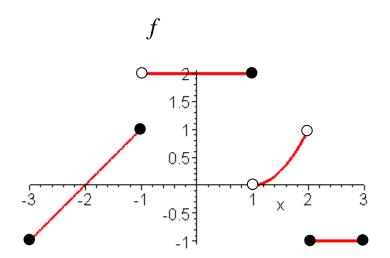
Solve the equations:

$$f(x)=1$$

$$f(x)=2$$

Find the *x*-coordinates of all the points on the graph with *y*-coordinate 1.

$$f(x) = \frac{3}{2}$$



Solve the inequalities:

$$f(x) > 1 \qquad 0 \le f(x) < 1$$

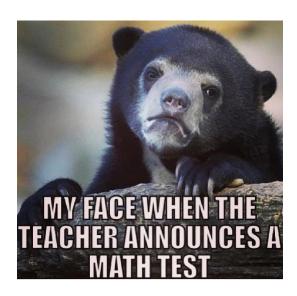
Find the *x*-coordinates of all the points on the graph with *y*-coordinates larger than 1.

$$f(x) \leq -1$$

Domains from function formulas:(Avoid division by zero and even roots of negative numbers.)

$$f(x) = \frac{1}{x^2 + 3x + 2}$$
 $g(x) = \sqrt{1 - 2x}$

$$h(x) = \frac{\sqrt{x-2}}{x-3}$$



Combinations of functions:

$$f+g$$
, $f-g$, fg , $\frac{f}{g}$, $f\circ g$

Combining (f-g)(x) = f(x)-g(x)**Functions**

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

$$(f \circ g)(x) = f(g(x))$$

$$f(x) =$$
 $g(x) =$

$$(fog)(x) =$$

$$f(x) = x^2 - 2, \quad g(x) = \sqrt{x+1}$$

$$(f+g)(0)$$

$$(f+g)(-1)$$

 $(g \circ f)(0)$

 $(f-g)(3) \qquad (f-g)(-2)$

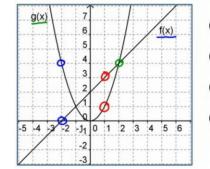
 $(f \circ f)(3)$

(fg)(3) $\left(\frac{f}{g}\right)(-1)$

 $\left(\frac{f}{g}\right)(3)$ $\left(\frac{f}{g}\right)(-2)$

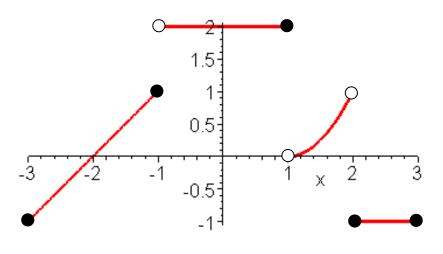
 $(f \circ g)(3)$ $(g \circ f)(3)$ $(f \circ g \circ f)(\sqrt{5})$

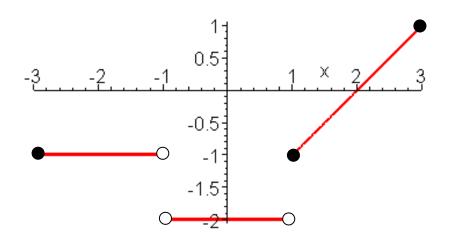
Combinations from graphs: Graph of f



(f+g)(1) = f(1) + g(1) = 3+1 = 4 (f-g)(-2) = f(-2) - g(-2) = 0 - 4 = -4 $(fg)(2) = f(2) \cdot g(2) = 4 \cdot 4 = 16$ (f/g)(-2) = 6

Graph of g





$$(f+g)(0)$$

$$\left(\frac{f}{g}\right)(1)$$

$$(fg)(-3)$$

$$(f \circ g)(2)$$

$$(g \circ f)(2)$$

$$(g \circ g)(0)$$

$$(f \circ f)(-1)$$

$$(f \circ g \circ f)(1)$$