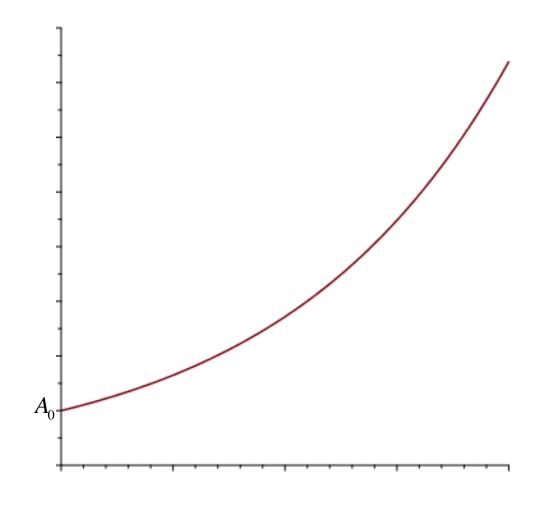
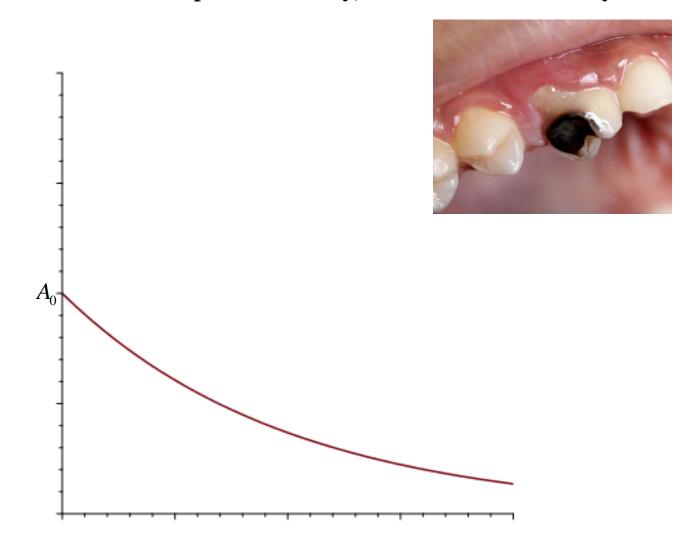
Exponential Growth and Decay Models:

$$A(t) = A_0 e^{kt}; t \ge 0, k \ne 0$$

For k > 0, the function models unlimited(exponential) growth, and k is called the growth rate.



For k < 0, the function models exponential decay, and k is called the decay rate.



Examples:

1. The number of bacteria in a culture is modeled by the exponential growth function

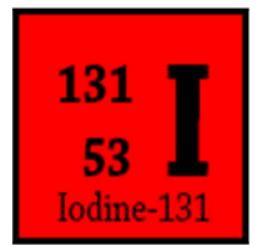
 $A(t) = 1000e^{.01t}$, where t is measured in hours.

- a) What is the initial number of bacteria?
- b) What is the population after 4 hours?

c) When will the number of bacteria reach 1700?

d) When will the number of bacteria double?

- 2. The decay of Iodine-131 is modeled by the exponential decay function $A(t) = 100e^{-.087t}$, where t is in days, and the amount of Iodine is in grams.
 - a) What is the initial amount of Iodine?
 - b) How much Iodine is left after 9 days?

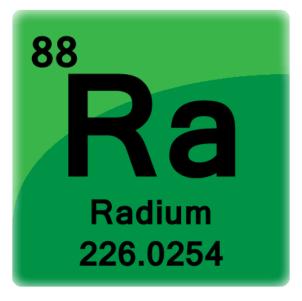


c) When will 70 grams of Iodine be left?

d) What is the half-life of iodine-131?

3. The half-life of Radium is 1690 years. If 10 grams is present now, how much will

be present in 50 years?

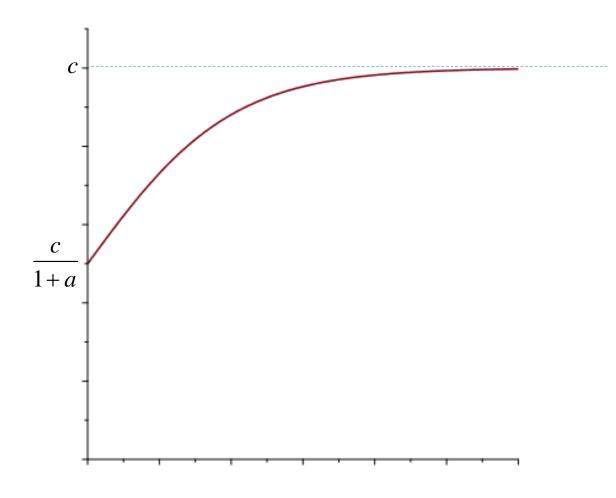


Logistic Growth and Decay Models:

$$P(t) = \frac{c}{1 + ae^{-bt}}; t \ge 0, a > 0, c > 0, b \ne 0$$

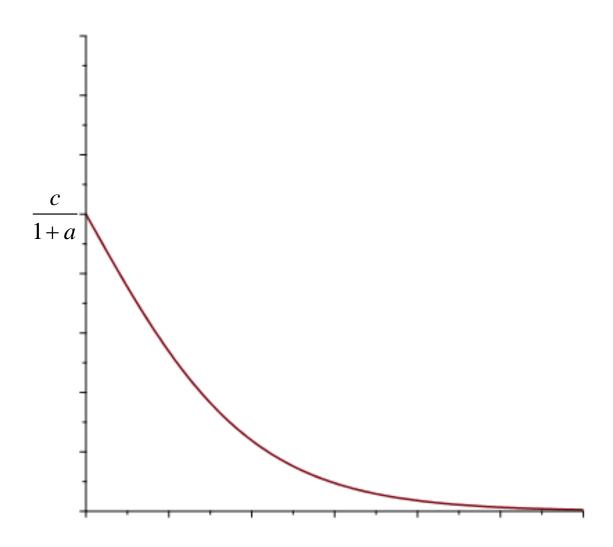
For b > 0, the function models limited(logistic) growth, and c is called the carrying capacity.

For
$$t$$
 large, $\frac{c}{1+ae^{-bt}} \approx \frac{c}{1} = c$



For b < 0, the function models logistic decay. Similar to exponential decay.

For t large, $\frac{c}{1+ae^{-bt}} \approx 0$



Example:

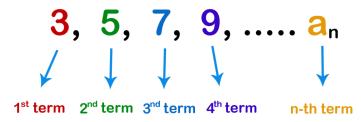
A model for the percentage of companies using Microsoft Word is the logistic growth function $P(t) = \frac{99.744}{1+3.01e^{-.799t}}$ where t is the number of years since the end of 1984.

- a) What was the percentage of Word users at the end of 1984?
- b) What was the percentage of Word users at the end of 1990?

d) What is the carrying capacity percentage for Word users?

Sequences:

A sequence is an ordered list of infinitely many numbers.



They can be represented by implying a pattern(partial list), giving a direct formula, or giving a recursive formula.

Implying a pattern(partial list):

{Determine the next two terms of each sequence.}

$$\{a_n\} = \{1, 2, 3, 4, \ldots\}$$

$${b_n} = {1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots}$$

$$\{c_n\} = \{1, -1, 1, -1, \ldots\}$$

$${d_n} = {1,-2,3,-4,5,-6,...}$$

$$\{e_n\} = \{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \dots\}$$

<u>Direct Formula:</u> Unless stated otherwise, assume the starting subscript value is 1. {Determine the first five terms of each sequence.}

$$a_n = n$$

$$b_n = \frac{1}{n}$$

$$c_n = \left(-1\right)^{n+1}$$

$$d_n = \left(-1\right)^{n+1} n$$

$$e_n = \frac{\left(-1\right)^{n+1}}{n}$$

<u>Recursive Formula:</u> {Determine the first five terms of each sequence.}

$$a_1 = 1, a_{n+1} = 1 + a_n; n \ge 1$$

$$b_1 = 1, b_{n+1} = \frac{1}{1 + \frac{1}{b_n}}; n \ge 1$$

$$c_1 = 1, c_{n+1} = -c_n; n \ge 1$$

$$d_1 = 1, d_{n+1} = -d_n + (-1)^n; n \ge 1$$

$$e_1 = 1, e_{n+1} = \frac{1}{-\frac{1}{e_n} + (-1)^n}; n \ge 1$$

$$f_1 = 1, f_2 = 1, f_{n+2} = f_{n+1} + f_n; n \ge 1$$

{Fibonacci}

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

start at this value go to this value $\sum_{n=1}^{4} n = 1 + 2 + 3 + 4 = 10$

Sigma or Summation Notation:

$$a_1 + a_2 + a_3 + \cdots + a_n$$
 can be abbreviated as $\sum_{k=1}^n a_k$. In other words,

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n.$$

1. Expand
$$\sum_{k=1}^{3} k^2$$
.

2. Expand
$$\sum_{k=1}^{4} (-1)^k$$
.

3. Compress
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$
.

 $\sum_{k=1}^{n} a_k$ is considered to be a sum of a portion of the terms of the sequence $\{a_1, a_2, a_3, \ldots\}$, and is sometimes referred to as a *finite series*.

Properties of Finite Series: If $\{a_n\}$ and $\{b_n\}$ are sequences and c is any real number, then

1.
$$\sum_{k=1}^{n} (ca_k) = c \sum_{k=1}^{n} a_k$$

Why?
$$\sum_{k=1}^{n} (ca_k) = (ca_1 + ca_2 + \dots + ca_n) =$$

2.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

Why?
$$\sum_{k=1}^{n} (a_k + b_k) = (a_1 + b_1) + \dots + (a_n + b_n) =$$

3.
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

Why?
$$\sum_{k=1}^{n} (a_k - b_k) = (a_1 - b_1) + \dots + (a_n - b_n) =$$

4.
$$\sum_{k=j+1}^{n} a_k = \sum_{k=1}^{n} a_k - \sum_{k=1}^{j} a_k$$
 for $1 \le j \le n-1$

Why?
$$\sum_{k=1}^{n} a_k - \sum_{k=1}^{j} a_k = (a_1 + a_2 + \dots + a_j + a_{j+1} + \dots + a_n) - (a_1 + a_2 + \dots + a_j) =$$

Special Formulas for Finite Series:

$$\sum_{k=1}^{n} c = c + c + c + c + \cdots + c = nc$$
(n terms)

1.
$$\sum_{k=1}^{5} 2$$

$$2. \sum_{k=1}^{5,000} 3$$

3.
$$\sum_{k=12}^{200} 2$$

3.
$$\sum_{k=12}^{200} 2 \qquad \left\{ \sum_{k=12}^{200} 2 = \sum_{k=1}^{200} 2 - \sum_{k=1}^{11} 2 \right\}$$

$$\sum_{i=1}^{n} k = 1 + 2 + 3 + \dots + n$$

(the sum of the first n counting numbers)

Let
$$S = 1 + 2 + 3 + \dots + (n-1) + n$$
. Then also, $S = n + (n-1) + \dots + 2 + 1$.

$$S = 1 + 2 + 3 + \dots + (n-1) + n$$

$$+S = n + (n-1) + (n-2) + \dots + 2 + 1$$

$$2S =$$

So
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
.

1.
$$\sum_{k=1}^{100} k$$

$$2. \sum_{k=1}^{100} (k+2)$$

$$3. \sum_{k=1}^{100} (2k)$$

4.
$$\sum_{k=11}^{100} k \qquad \left\{ \sum_{k=11}^{100} k = \sum_{k=1}^{100} k - \sum_{k=1}^{10} k \right\}$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
 (the sum of the squares of the first n counting numbers)

$$\sum_{k=1}^{n} (k+1)^{3} - \sum_{k=1}^{n} k^{3} = \left[2^{3} + 3^{3} + \dots + (n+1)^{3} \right] - \left[1^{3} + 2^{3} + \dots + n^{3} \right] = (n+1)^{3} - 1$$

And

$$\sum_{k=1}^{n} (k+1)^{3} - \sum_{k=1}^{n} k^{3} = \sum_{k=1}^{n} \left[(k+1)^{3} - k^{3} \right] = \sum_{k=1}^{n} \left(k^{3} + 3k^{2} + 3k + 1 - k^{3} \right) = \sum_{k=1}^{n} \left(3k^{2} + 3k + 1 \right)$$

$$= 3 \sum_{k=1}^{n} k^{2} + 3 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 3 \sum_{k=1}^{n} k^{2} + \frac{3n(n+1)}{2} + n$$

So
$$3\sum_{k=1}^{n} k^2 + \frac{3n(n+1)}{2} + n = (n+1)^3 - 1.$$

This means that
$$\sum_{k=1}^{n} k^2 = \frac{(n+1)^3 - 1 - \frac{3n(n+1)}{2} - n}{3} = \frac{n(n+1)(2n+1)}{6}.$$

1.
$$\sum_{k=1}^{12} k^2$$

2.
$$\sum_{k=1}^{12} (k^2 - 4)$$

3.
$$\sum_{k=1}^{12} (2k^2 - k + 1)$$