Proving More Things Using the Principle of Mathematical Induction:

Divisibility by 3: A whole number, n, is divisible by 3, if there is a whole k so that n=3k.

Must the sum of two whole numbers that are divisible by 3 also be divisible by 3?

Must the product of a whole number and a whole number divisible by 3 be divisible by 3?

1. Prove that $4^n - 1$ is divisible by 3 for all natural numbers, n.

Base Step: Show that it's true for n=1. $4^{1}-1=$

<u>Induction Step:</u> Suppose that it's true for n = k. So $4^k - 1$ is divisible by 3.

Goal: Show that it's true for n = k + 1, i.e. $4^{k+1} - 1$ is divisible by 3.

$$4^{k+1} - 1 = \underbrace{4(4^k - 1)}_{} + 3$$

WELL I HOPE THAT GIVES YOU A
FLAVOUR OF WHAT THE WORK IS
ABOUT...ANY QUESTIONS?

INDUCTION
MEETING
OLIECTIC HERE!

2. Prove that $n^3 + 2n$ is divisible by 3 for all natural numbers, n.

Base Step: Show that it's true for n = 1. $1^3 + 2 \cdot 1 =$

Induction Step: Suppose that it's true for n = k. So $k^3 + 2k$ is divisible by 3.

Goal: Show that it's true for n = k + 1, i.e. $(k+1)^3 + 2(k+1)$ is divisible by 3.

$$(k+1)^{3} + 2(k+1) = k^{3} + 3k^{2} + 3k + 1 + 2k + 2$$
$$= (k^{3} + 2k) + (3k^{2} + 3k + 3)$$
$$= (k^{3} + 2k) + 3(k^{2} + k + 1)$$

Sometimes statements involving natural numbers aren't true for all natural numbers.

Sometimes they're only true for natural numbers n with $n \ge n_0$.

1. Prove that
$$\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\cdots\left(1-\frac{1}{n^2}\right) = \frac{n+1}{2n}$$
 for all natural numbers, n , with $n \ge 2$.

Base Step: Show that it's true for n = 2.

Left side	Right side
$1 - \frac{1}{4} =$	$\frac{2+1}{2\cdot 2} =$

Induction Step: Suppose that it's true for n = k. So

$$\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\cdots\left(1-\frac{1}{k^2}\right)=\frac{k+1}{2k}$$
. Multiply both sides by

$$\left[1 - \frac{1}{\left(k+1\right)^2}\right]$$
 to get

$$\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{9}\right)\left(1 - \frac{1}{16}\right)\cdots\left(1 - \frac{1}{k^2}\right)\left[1 - \frac{1}{(k+1)^2}\right] = \frac{k+1}{2k}\left[1 - \frac{1}{(k+1)^2}\right]$$

$$= \frac{k+1}{2k} \left[\frac{(k+1)^{2}}{(k+1)^{2}} - \frac{1}{(k+1)^{2}} \right] = \frac{k+1}{2k} \left[\frac{k^{2}+2k}{(k+1)^{2}} \right] = \frac{k+1}{2k} \left[\frac{k(k+2)}{(k+1)^{2}} \right] = \frac{k+1}{2k} \left[\frac{k(k$$

Conclusion:

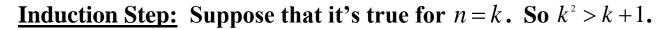
How do you induce a current in a wire by counting to 10?

By mathematical induction.

2. Prove that $n^2 > n+1$ for all natural numbers, n, with $n \ge 2$.

Base Step: Show that it's true for n = 2.

Left side	Right side
2° =	2+1=



$$(k+1)^2 = k^2 + 2k + 1 > (k+1) + 1 + 2k > (k+1) +$$

Factorials:

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$
$$= n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$$

$$1! = 1$$

$$2! = 2 \cdot 1 = 2$$

$$3! = 3 \cdot 2 \cdot 1 = 6$$

$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 4 \cdot 3! = 4 \cdot 6 = 24$$

$$5! = 5 \cdot 4! = 120$$

$$6! = 6 \cdot 5! = 720$$

By special separate definition, 0! = 1.

3. Prove that $n! > n^2$ for all natural numbers, n, with $n \ge 4$.

Base Step: Show that it's true for n = 4.

Left side	Right side
4!=	$4^2 =$

Induction Step: Suppose that it's true for n = k. So $k! > k^2$. Multiply both sides of the inequality by (k+1), to get

$$(k+1)! > \underline{k^2(k+1) > (k+1)(k+1)}$$
from the previous induction problem

Sometimes statements that can be proven by induction can also be proven in another way.

1. Prove that $n^3 + 3n^2 + 2n$ is divisible by 3 for all natural numbers, n. $n^3 + 3n^2 + 2n = n(n^2 + 3n + 2) = n(n+1)(n+2)$. Every third natural number starting with 1 is a multiple of 3, so if you have three consecutive natural numbers, one of them must be a multiple of 3, and hence their product is a multiple of 3.

2. Prove that $n^3 + 3n^2 + 2n$ is divisible by 6 for all natural numbers, n. $n^3 + 3n^2 + 2n = n(n^2 + 3n + 2) = n(n+1)(n+2)$. Every second natural number starting with 1 is a multiple of 2, so if you have three consecutive natural numbers, at least one of them must be a multiple of 2, and hence their product is a multiple of 2 and 3. This means their product must be a multiple of 6.

3. Prove that $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdots\left(1-\frac{1}{n}\right)=\frac{1}{n}$ for all natural numbers, n, with $n \ge 2$.

$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\cdots\left(1-\frac{1}{n}\right) = \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdots\cdot\frac{n-2}{n-1}\cdot\frac{n-1}{n} = \frac{1}{2}\cdot\frac{n-1}{2}$$

