Review of Complex Numbers:

The standard form of a complex number is a+bi, where a and b are real numbers
and i’ =-1.
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The standard form is also known as the rectangular form, since the complex numbe
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a-+Dbi can be thought of as a point in the complex plane.
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The distance that a complex number, z=a-+bi, is in the complex plane from the

origin is called its magnitude or modulus, |z|=|a+bi|=~/a" +b’.

Example:

3-4i =

The conjugate or complex conjugate of a+bi is a-—bi, and the notation is

a-+bi=a-bi. For any complex number, z, 77 = \zr.

Show why.
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There is an alternative method for locating and describing complex numbers in the

complex plane called polar form-just like polar coordinates. ﬁ@ the guy, e
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Standard polar formhas r>0 , 0<@< 2z, and is written as a+bi = r(c056?+ Isin 6?),

where r =+/a’*+b’.
Examples:

Find the standard polar form of 1+1.

Find the standard polar form of 1-/3i.
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Products and Quotients of Complex Numbers in Polar Form:

We’ll need some trig. identities: cos(a + ) =cosacos f—sinasing  and
sin(a + ) =cosasin +cos Ssina

z,=r(cosd +ising) and z, =r,(cos 6, +ising,)

Product: zz,=r,(cosg, +isiné)-r,(cosd,+ising,)
=rr,[ (cos6,cos6, —sing sing,) +i(cos 6,sing, +cos b, sin6) |

=rr,[cos(6,+6,)+isin(6,+6,)]

Similarly,
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Quotient: L %[COS(Q —6,)+isin(6, -6, )}



Examples:
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De Moivre’s Theorem:

For z=r(cos@+isind) and n, an integer, z' =r"| cos(n@)+isin(ng)].

Examples:

Find (1+i). Find (v3-i).

Abraham de Moivre, known for his textbook on

probability theory, predicted his own death. He

became more lethargic as he aged, and noticed
he was sleeping an extra 15 minutes each

night. He calculated that he’d die on the day
his additional sleep time added up to 24 hours,
which was November 27th, 1754. He was right.




Let’s use De Moivre’s Theorem to find some roots of imaginary numbers.

Find all the square-roots of i.

We want to find a complex number, z =|z|(cos@ +isin8);0< 8 <2x, so that z* =i.
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Find all the cube-roots of 4\/§+ 4.

We want to find a complex number, z =|z|(cos@+isin8);0< 6 < 2, so that
2 =43+ 4i. '

This means that
Dz\(c03¢9+ isin «9)]3 = 43+ 4i = |7] (cos36 +isin30) = 44/3 + 4i

= \zr (cos36+isin30) = S{COS(ZWZ + %) +isin (Znﬂ + %ﬂ
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We also need to have that |z{=2. So the three cube-roots of 43 +4i are
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