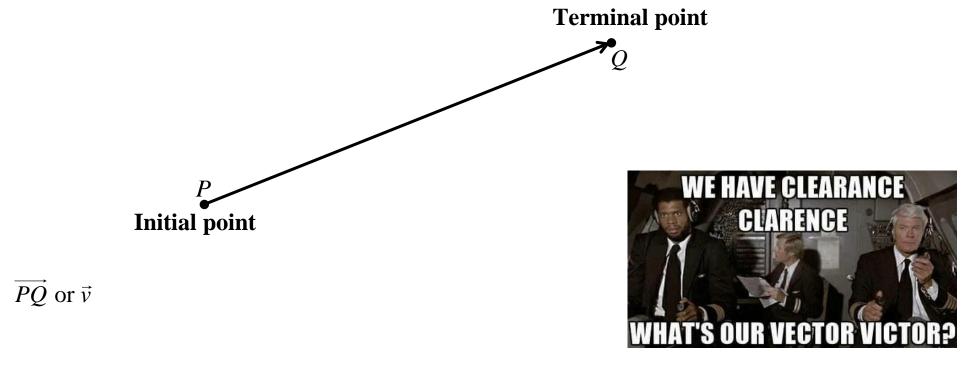
Vectors:

For us, vectors are directed line segments(arrows). They represent quantities that have both a direction and a magnitude(amount).

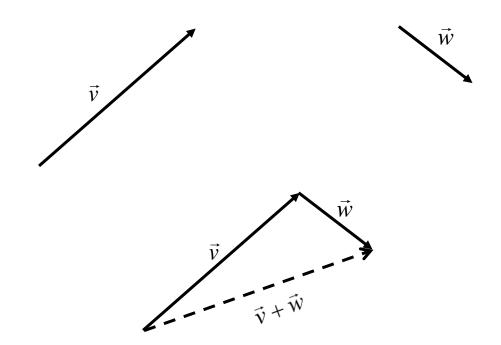


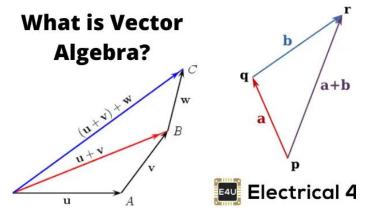
The length of a vector is its magnitude, and the direction can be interpreted as an angle or slope of the arrow. There is a special vector whose initial and terminal points are the same, i.e. its magnitude is zero. This vector is called the zero vector, $\vec{0}$.

VECTOR: I'm applying for a villain loan. I go by Vector. It's a mathematical term, represented by an arrow with both direction and magnitude. Vector! That's me, because I commit crimes with both direction and magnitude. Oh yeah!

The Sum of Two Vectors:

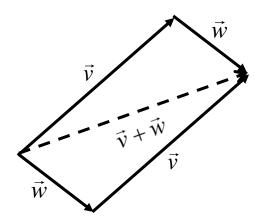
 $\vec{v} + \vec{w}$





Properties of Vector Addition:

1. $\vec{v} + \vec{w} = \vec{w} + \vec{v}$, Commutative Property.

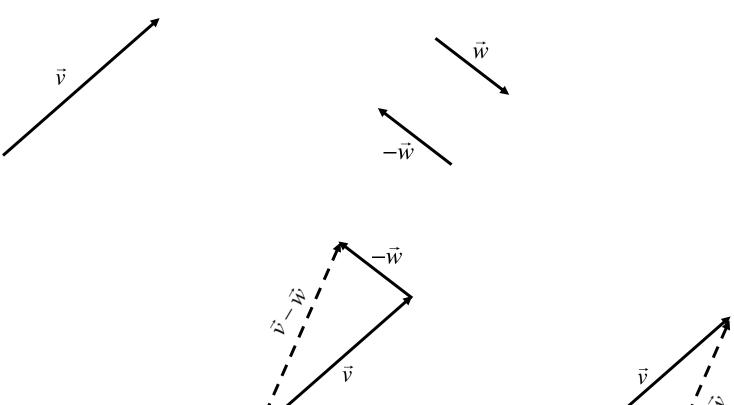


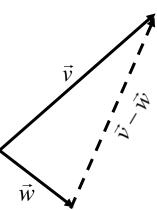
2. $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$, Associative Property

3. $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$, Zero Vector Property

"It's a discipline note from my teacher. I solved the math problems in my head and I was supposed to use a calculator."

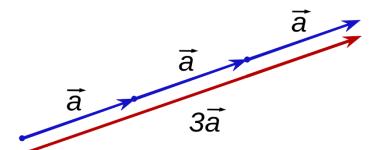
4. $\vec{v} - \vec{w} = \vec{v} + (-\vec{w})$, where $-\vec{w}$ is a vector with same magnitude as \vec{w} but the opposite direction. Vector Subtraction.



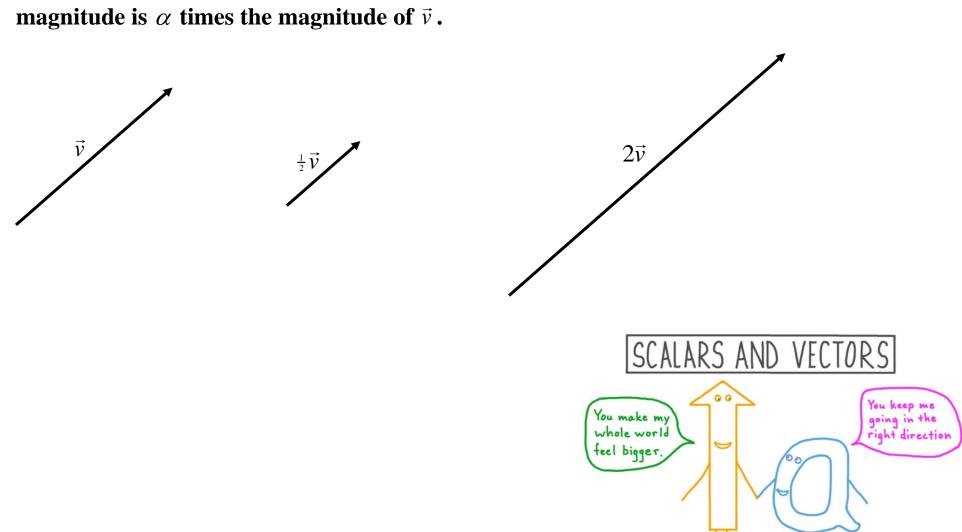


Multiplying Vectors by Numbers:

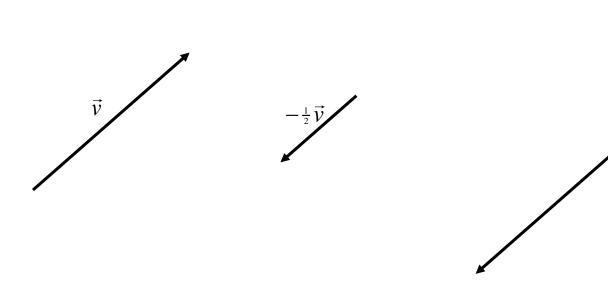
The process is called scalar multiplication.



If $\alpha > 0$, then the vector $\alpha \vec{v}$ is the vector with the same direction as \vec{v} , but whose magnitude is α times the magnitude of \vec{v} .



If α < 0, then the vector $\alpha \vec{v}$ is the vector with the opposite direction as \vec{v} , but whose magnitude is $|\alpha|$ times the magnitude of \vec{v} .



If $\alpha = 0$ or $\vec{v} = \vec{0}$ then $\alpha \vec{v} = \vec{0}$.

"You can feel good knowing your lesson plans put up a good fight."

Properties of Scalar Multiplication:

1.
$$0\vec{v} = \vec{0}$$

2.
$$1\vec{v} = \vec{v}$$

$$3. -1\vec{v} = -\vec{v}$$

4.
$$(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$$

5.
$$\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$$

6.
$$\alpha(\beta\vec{v}) = (\alpha\beta)\vec{v}$$

The games get pretty crazy at English teachers' parties.

Magnitude of a Vector:

The abbreviation for the magnitude of the vector \vec{v} , is $\|\vec{v}\|$.

Properties of Magnitude:

1.
$$\|\vec{v}\| \ge 0$$

2.
$$\|\vec{v}\| = 0$$
 if and only if $\vec{v} = \vec{0}$

3.
$$||-\vec{v}|| = ||\vec{v}||$$

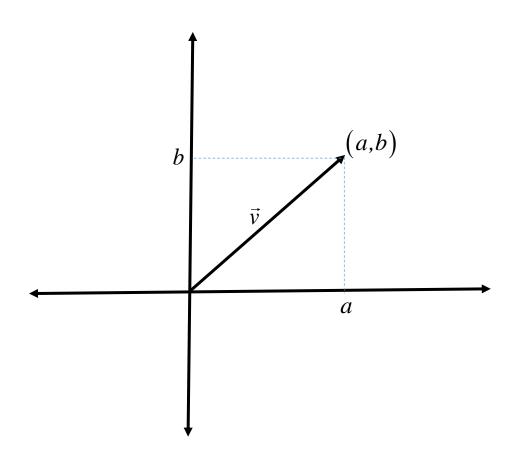
4.
$$\|\alpha \vec{v}\| = |\alpha| \|\vec{v}\|$$

If $\|\vec{v}\| = 1$, then \vec{v} is called a <u>unit vector</u>.



Algebraic or Component Form of Vectors:

Place the initial point of the vector \vec{v} at the origin.



The component form of the vector \vec{v} is $\langle a,b \rangle$, i.e. $\vec{v} = \langle a,b \rangle$. In general, if you know the coordinates of the initial point, (x_1,y_1) , and terminal point, (x_2,y_2) , of \vec{v} , then $\vec{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$.

Example:

Find the component form of the vector that connects the point (1,-2) to the point (-3,4).

There is an alternative method of representing the component form of a vector using the special unit vectors \vec{i} and \vec{j} .

 \vec{i} is a unit vector pointing in the same direction as the positive x-axis, and \vec{j} is a unit vector pointing in the same direction as the positive y-axis.

So if
$$\vec{v} = \langle a, b \rangle$$
, then $\vec{v} = a\vec{i} + b\vec{j}$.

Vector Operations Using Algebraic Vectors:

If $\vec{v} = \langle a_1, b_1 \rangle$ and $\vec{w} = \langle a_2, b_2 \rangle$ then

1.
$$\vec{v} + \vec{w} = \langle a_1 + a_2, b_1 + b_2 \rangle$$

2.
$$\vec{v} - \vec{w} = \langle a_1 - a_2, b_1 - b_2 \rangle$$

3.
$$\alpha \vec{v} = \langle \alpha a_1, \alpha b_1 \rangle$$

4.
$$\|\vec{v}\| = \sqrt{a_1^2 + b_1^2}$$

Examples:

If $\vec{v} = \langle 2, -3 \rangle$ and $\vec{w} = \langle 4, 5 \rangle$ then find

$$\vec{v} + \vec{w}$$

$$\vec{v} - \vec{w}$$

$$5\vec{v}$$

$$3\vec{v} - 2\vec{w}$$

$$\| \vec{v} \|$$

Finding Unit Vectors with the Same Direction:

If \vec{v} is a non-zero vector, then the vector $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$ is a unit vector with same direction as \vec{v} .

Show why.

Example:

Find a unit vector with the same direction as the vector $\vec{v} = \langle 2, -3 \rangle$.

If \vec{u} is a unit vector with the same direction as \vec{v} , then $\vec{v} = ||\vec{v}|| \vec{u}$.

If you place the initial point of a unit vector, \vec{u} , at the origin, its terminal point will lie on the unit circle. It will determine an angle α with the positive x-axis with $0 \le \alpha < 2\pi$

lpha is called the direction angle of the unit vector \vec{u} , and

$$\vec{u} = \langle \cos \alpha, \sin \alpha \rangle = \cos \alpha \vec{i} + \sin \alpha \vec{j}$$
.

So if you are given the magnitude $\|\vec{v}\|$ of a non-zero vector \vec{v} and a direction angle α , then $\vec{v} = \|\vec{v}\| \langle \cos \alpha, \sin \alpha \rangle = \|\vec{v}\| (\cos \alpha \vec{i} + \sin \alpha \vec{j})$.

Examples:

1. Find the direction angle of the vector $\vec{v} = \langle 1, -\sqrt{3} \rangle$.

2. Find the vector of magnitude 6 and direction angle of $\frac{5\pi}{6}$.