Dot Product of Two Vectors:

If $\vec{v} = \langle a_1, b_1 \rangle$ and $\vec{w} = \langle a_2, b_2 \rangle$, then the dot product of the two vectors is $\vec{v} \cdot \vec{w} = a_1 a_2 + b_1 b_2$.

Examples:

1.
$$\langle 1,2\rangle \cdot \langle 2,-3\rangle$$

2.
$$\langle 1,2 \rangle \cdot \langle 2,-1 \rangle$$

3.
$$\langle 1,2\rangle \cdot \langle 1,2\rangle$$

4.
$$\langle 1,2\rangle \cdot \langle 0,0\rangle$$

Properties of Dot Product:

1.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

Prove it.

2.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Prove it.

$$\mathbf{3.} \ \vec{u} \cdot \vec{u} = \left\| \vec{u} \right\|^2$$

Prove it.

4.
$$\vec{u} \cdot \vec{0} = \vec{0} \cdot \vec{u} = 0$$

Prove it.

What does the dot product represent?

If \vec{u} and \vec{v} are non-zero vectors, then we can form the following triangle.

From the Law of Cosines, we get that

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos\theta$$

So

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - 2 ||\vec{u}|| ||\vec{v}|| \cos \theta$$

For \vec{u} and \vec{v} non-zero vectors, we can find the angle between the vectors, θ , with

 $0 \le \theta \le \pi$, from the formula

$$\cos\theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}.$$

Example:

Find the angle between the vectors $\langle \sqrt{3}, 1 \rangle$ and $\langle -2\sqrt{3}, 2 \rangle$.

Parallel Vectors:

Two non-zero vectors \vec{u} and \vec{v} are parallel if one of them is a scalar multiple of the other, i.e. $\vec{u} = \alpha \vec{v}$. If $\alpha > 0$, then the angle between the vectors is 0. If $\alpha < 0$, then the angle between the vectors is π . The zero vector is considered to be parallel to all vectors.

Orthogonal Vectors:

Two non-zero vectors \vec{u} and \vec{v} are orthogonal(perpendicular) if the angle between them is $\frac{\pi}{2}$. In this case, $\vec{u} \cdot \vec{v} = 0$. The zero vector is considered to be orthogonal to every vector, so two vectors \vec{u} and \vec{v} are orthogonal if and only if $\vec{u} \cdot \vec{v} = 0$.

Examples:

Determine if the given pair of vectors are parallel, orthogonal, or neither.

1.
$$\langle 1,2 \rangle$$
 and $\langle 3,6 \rangle$

2.
$$\langle 1,2 \rangle$$
 and $\langle -\frac{1}{3}, -\frac{2}{3} \rangle$

3.
$$\langle 1,2 \rangle$$
 and $\langle -2,1 \rangle$

4.
$$\langle 1, 2 \rangle$$
 and $\langle 4, -7 \rangle$

Vector Projection:

Given two non-zero vectors \vec{u} and \vec{v} , we would like to write the vector \vec{u} as a sum of two vectors: one parallel to \vec{v} and one orthogonal to \vec{v} .

$$\vec{u} = \operatorname{Proj}_{\vec{v}} \vec{u} + (\vec{u} - \operatorname{Proj}_{\vec{v}} \vec{u})$$

$$\operatorname{Proj}_{\vec{v}}\vec{u} = \|\vec{u}\|\cos\theta \frac{\vec{v}}{\|\vec{v}\|} = \left(\frac{\|\vec{u}\|\|\vec{v}\|\cos\theta}{\|\vec{v}\|^{2}}\right)\vec{v} = \left(\frac{\vec{u}\cdot\vec{v}}{\vec{v}\cdot\vec{v}}\right)\vec{v}$$

Example:

Write the vector $\vec{u} = \langle 2, 3 \rangle$ as a sum of two vectors: one parallel to $\vec{v} = \langle 1, -3 \rangle$ and one orthogonal to $\vec{v} = \langle 1, -3 \rangle$.

