Conic Sections:

Curves formed by the intersection of a plane with a double cone.

Parabola

Ellipse or Hypobola

Hyperbola

Parabola:

It's the set of points in the plane that are equidistant from a fixed point called the focus and a fixed line called the directrix.

Vertical Parabolas with Vertex at the Origin:

The focus will be at (0,a) with a > 0, and the directrix will be y = -a.

$$\sqrt{(x-0)^2 + (y-a)^2} = y + a$$

$$x^{2} + (y-a)^{2} = (y+a)^{2}$$

$$x^2 + y^2 - 2ay + a^2 = y^2 + 2ay + a^2$$

$$x^2 - 2ay = 2ay$$

$$x^2 = 4ay$$

Sketch the graph of the parabola with the equation $x^2 = 8y$.

For a vertical parabola with vertex at the origin that opens down, the equation can be written as $x^2 = -4ay$ with a > 0, and the focus at (0,-a) and the directrix y = a.

Sketch the parabola with the equation $x^2 = -16y$.

Similarly, for horizontal parabolas, the equations are(right parabola) $y^2 = 4ax$, with focus at (a,0) and directrix x = -a, and (left parabola) $y^2 = -4ax$, with focus at (-a,0) and directrix x = a.

Sketch the graph of the parabola with the equation $y^2 = 4x$.

Sketch the graph of the parabola with the equation $y^2 = -6x$.

For parabolas with vertices at (h,k), the equations are

$$(x-h)^{2} = 4a(y-k)$$
$$(x-h)^{2} = -4a(y-k)$$
$$(y-k)^{2} = 4a(x-h)$$
$$(y-k)^{2} = -4a(x-h)$$

Sketch the following parabolas:

1.
$$(x-4)^2 = 16(y+2)$$

2.
$$(y+1)^2 = -4(x-2)$$

$$3. y^2 - 4y + 4x + 4 = 0$$

$$4. x^2 + 8x = 4y - 8$$

Find equations for the following parabolas:

1. Focus:(0,2) and Vertex: (0,0)

2. Focus: (-4,0) and Vertex: (0,0)

3. Focus: (0,-1) and Directrix: y=1

4. Focus: (6,-2) and Vertex: (4,-2)

5. Focus: (-4,4) **and Directrix:** y = -2

