
Counting Formula for the Union of Two Sets:

$$n(A \cup B) = x + y + z$$

$$= (x + y) + (y + z) - y$$

$$= n(A) + n(B) - n(A \cap B)$$

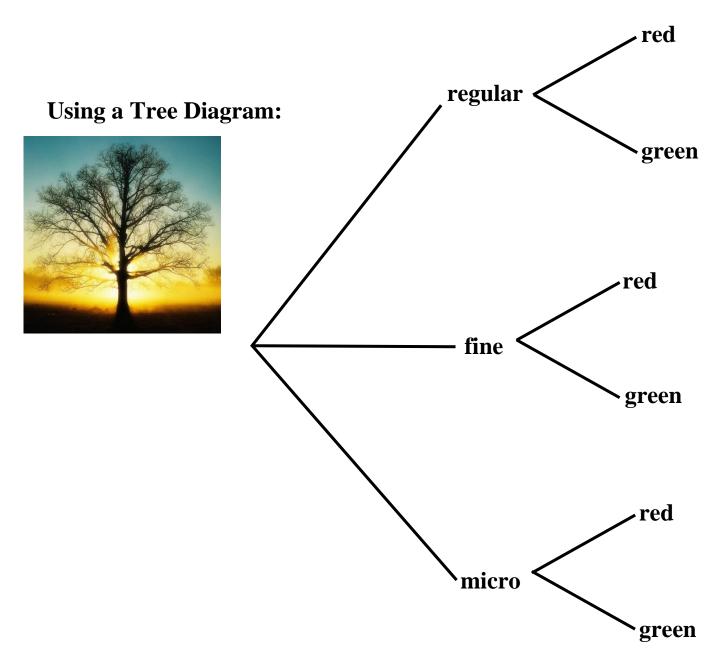
So
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
.

Examples:

If
$$n(A)=10$$
, $n(B)=19$, and $n(A\cap B)=5$, then what's $n(A\cup B)$?

If
$$n(A \cup B) = 27$$
, $n(A) = 12$, and $n(B) = 23$, then what's $n(A \cap B)$?

Counting Methods:


Example:

A pen has tip options of regular tip, fine tip, or micro tip, and it has ink color options of red ink or green ink. How many different pens are possible?

Using a table:

	regular	fine	micro
red			
green			

The number of pens possible is the number of cells in the table: 3×2 .

The number of pens possible is the number of branch tips on the right: 3×2 .

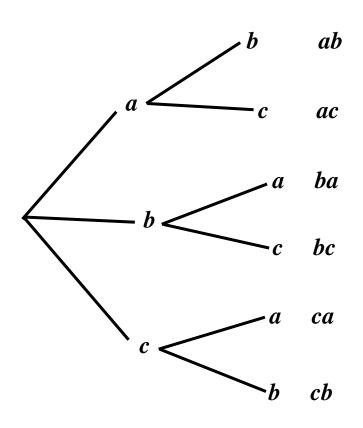
The Fundamental Counting Principle:

If a sequence of decisions is to be made, then the number of different ways of making all the decisions is the product of the number of options for each decision.

Examples:

1. A meal consists of 1 of 8 appetizers, 1 of 10 entrees, and 1 of 5 desserts. How many different meals are possible?

2. In a race with 5 horses, how many different first, second, and third place finishes are possible?


3. In a certain small state, license plates consist of th digits.a) How many different plates are possible?	ree letters followed by two TEXAS 911 WILLIAM STEPPING PROPRIETA PROPRI
b) How many if letters can't repeat?	
c) How many if digits can't repeat?	
d) How many if no repeats?	

Permutations:

A permutation is an arrangement of objects in a particular order.

Example:

Find all the permutations of the objects $\{a,b,c\}$ of size 2.

There are 6 permutations of size 2 from the 3 objects. If we just wanted to know how many, we could have used the Fundamental Counting Principle.

In general, the number of permutations of size r from n objects is abbreviated as ${}_{n}P_{r}$. So far, we know that ${}_{3}P_{2}=6$. There's a nice formula for the value of ${}_{n}P_{r}$ in general, but it involves things called factorials.

Factorials:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$$
 or $n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n$
So $1! = 1$.
 $2! = 2 \cdot 1 = 2$
 $3! = 3 \cdot 2 \cdot 1 = 6$
 $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 4 \cdot 3! = 4 \cdot 6 = 24$
 $5! = 5 \cdot 4! = 5 \cdot 24 = 120$
 $6! = 6 \cdot 5! = 6 \cdot 120 = 720$

By special definition, 0! = 1.

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Let's check it out for $_3P_2$, which we already know is equal to 6.

$$_{3}P_{2} = \frac{3!}{(3-2)!} = \frac{3!}{1!} = \frac{6}{1} = 6$$

Examples:

1. Five solo singers are to perform their acts at a nightclub on Saturday night. How

many different orders of their appearances are possible?

 $_{5}P_{5}$

Or

Fundamental Counting Principle

2. From a group of 6 people, a president, vice-president, and secretary will be selected, how many different selections are possible?

 $_6P_3$

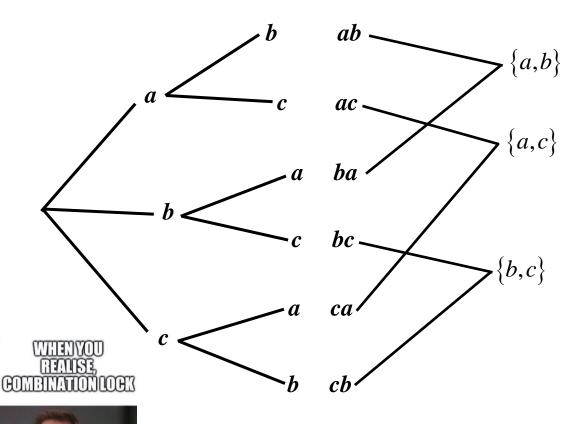
Or

Fundamental Counting Principle

3. In a race with 8 horses, how many different first, second, and third place finishes are possible?

 $_8P_3$

Or


Fundamental Counting Principle

Combinations:

A combination is a selection of objects without regard to order, i.e. a subset.

Example:

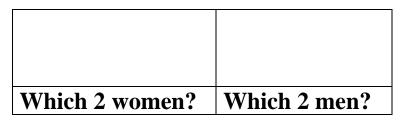
Find all the combinations of the objects $\{a,b,c\}$ of size 2.

There are 6 permutations of size 2 from the 3 objects, but only 3 combinations of size 2 from the 3 objects.

In general, the number of combinations of size r from n objects is abbreviated as

$$_{n}C_{r}$$
. So far, we know that $_{3}C_{2}=3$, and $_{3}C_{2}=3=\frac{6}{2}=\frac{_{3}P_{2}}{2!}$. This is true in general, and

leads to a nice formula for
$${}_{n}C_{r}$$
. ${}_{n}C_{r} = \frac{n!}{r! \cdot (n-r)!}$


Examples:

1. A three-person committee is to be selected from a group of 10 people. How many different committees are possible?

2. In a certain lottery, you must select 6 numbers from the numbers 1-50. How many different lottery selections are possible?

3. A group consists of	7 men and 8 women.	A committee of	4 people will be selected.
a) How many differ	ent 4-person committ	tees are possible?	
b) How many differ	rent 4-person commit	tees consisting of	4 women are possible?
c) How many differ possible?	ent 4-person commit	tees consisting of	3 women and 1 man are
	Which 3 women?	Which 1 man?	

d) How many different 4-person committees consisting of 2 women and 2 men are possible?

e) How many different 4-person committees have at least 1 man?

