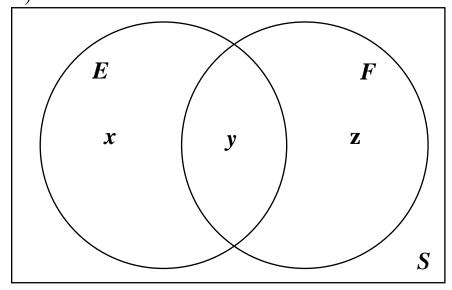
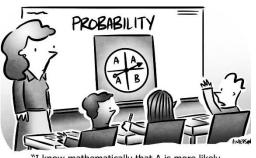

Probability Diagrams and Probability Formulas:

A probability diagram is like a specialized Venn Diagram in which the probabilities of different events in the sample space are labelled.

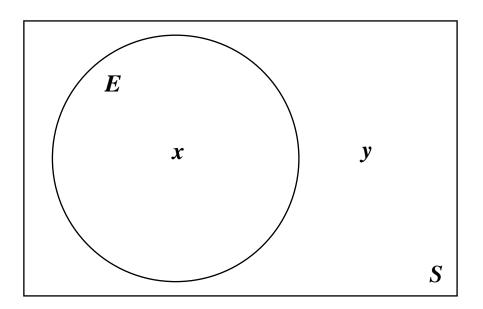



The sum of all the probabilities that make up all the disjoint regions of S must be 1.

$$P(E) = P(E \cap F) = P(E \cap F)$$

$$P(E \text{ or } F) = P(E \cup F) = P(\text{not } E) = P(E') = P((E \cup F)') = P(E \cup F)$$

A formula for $P(E \cup F)$:



"I know mathematically that A is more likely, but I gotta say, I feel like B wants it more."

$$P(E \cup F) = x + y + z = x + y + y + z - y$$
$$= (x + y) + (y + z) - y$$
$$= P(E) + P(F) - P(E \cap F)$$

If $E \cap F = \phi$, then it's impossible for both events to occur, and they are called mutually exclusive events. In this case, $P(E \cup F) = P(E) + P(F)$

Formulas involving P(E'):

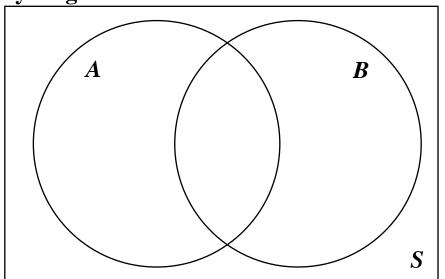
$$1 = P(S) = x + y = P(E) + P(E')$$


$$\mathbf{So}$$

$$P(E) = 1 - P(E')$$

$$P(E') = 1 - P(E)$$

BEHOLD, THE HAMMER OF PROBABILITY



Out of context example:

Suppose P(A) = .7, P(B) = .4, and $P(A \cap B) = .3$.

Complete the probability diagram:

THIS SIGE IS WAY I

Behold, my other hammer of probability

Find

$$P(A \cup B)$$

$$P\Big(\big(A \cup B\big)'\Big)$$

$$P(A \cap B')$$

$$P(B \cap A')$$

$$P\Big(\big(A\cap B\big)'\Big)$$

In context examples:

1. A card is randomly selected from a standard 52-card deck.

P(ace or a heart)

P(ace or king)

P(face card or a club)

2. A survey of North Harris students had the following results.

	Pepperoni	Sausage	Mushroom	Total
Freshman	25	15	5	45
Sophomore	30	20	5	55
Total	55	35	10	100

A student from the survey is <u>selected at random</u>.

a) P(sausage or mushroom)

b) P(freshman or pepperoni)

Odds and Probability:

The odds in favor of an event E is the ratio of the probability that E will occur to the probability that E won't occur.

Odds in favor of E: P(E): P(E') or P(E) to P(E')

The odds are usually expressed as a ratio of whole numbers.

Example:

If $P(E) = \frac{2}{5}$, then find the odds in favor of E.

"I wish we hadn't learned probability 'cause I don't think our odds are good."

The odds against an event E is the ratio of the probability that E won't occur to the probability that E will occur, i.e. the reversal of the odds in favor.

Odds against E: P(E'): P(E) or P(E') to P(E)

Example:

If $P(E) = \frac{3}{7}$, then find the odds against E.

Sometimes you'll want to go from odds to probability. If the odds in favor of E is a

to b, then
$$\frac{P(E)}{P(E')} = \frac{a}{b} \Rightarrow \frac{P(E)}{1 - P(E)} = \frac{a}{b}$$
. Cross-multiplying leads to

$$bP(E) = a - aP(E) \Rightarrow (a+b)P(E) = a$$
.

Example:

If the odds in favor of E is 4 to 7, then find P(E).

