Basic Set Terminology:

A is the set of students registered for this class. (Word Description method)

$$B = \{1, 2, 3, 4, 5\} \qquad (Roster method)$$

$$C = \{2,4,6,8\}$$
 (Roster method)

 $E = \{x \mid x \text{ is an even counting number less than } 10\}$ (Set-builder notation)

Convert $F = \{1, 2, 3, ..., 19\}$ into set-builder notation.

There is a special set with no elements called the empty set.

Notation: $\{\ \}$ or ϕ .

Sometimes the empty set is in disguise.

 $A = \{x \mid x \text{ is greater than 5 and less than 2}\}$

Set membership:

 \in means is a member or element of

∉ means is not a member or element of

Fill-in the blanks with either \in or $\not\in$.

$$3 \left[3,5,7 \right]$$

$$6 \left[3,5,7 \right]$$

$$15 \boxed{\{1,2,3,...,20\}}$$

$$3 \left[\begin{cases} x \mid x \text{ is a counting number with } 4 \le x \le 9 \end{cases} \right]$$

$$8 \boxed{\phi}$$

There's a special abbreviation for the Counting Numbers or Natural numbers:

$$N = \{1, 2, 3, 4, 5, 6, \ldots\}$$

Cardinal Number and Cardinality:

The cardinal number or cardinality of a set, A, is the number of elements in the set A.

Notation: n(A)

$$n(\{x \mid x \in \mathbb{N} \text{ with } 4 \le x \le 12\}) =$$

$$n(\{x \mid x \in \mathbb{N} \text{ with } x \le 4 \text{ and } x > 7\}) =$$

$$n({2,2,4,6,8}) =$$

Equivalent Sets:

Sets are equivalent if they have the same cardinality(number of elements).

Determine if the following pairs of sets are equivalent sets:

$$\{1,2,3,4,5\}$$
 and $\{a,b,c,d,e\}$

$$\{x \mid x \in \mathbb{N} \text{ with } 3 \le x \le 8\} \text{ and } \{1, 2, 3, 4, 5\}$$

$$\{x \mid x \in \mathbb{N} \text{ with } x \le 2 \text{ and } x \ge 11\} \text{ and } \phi$$

$$\{1,2,3,4\}$$
 and $\{1,2,3,4\}$

Equality of Sets:

Sets are equal if they have the same elements.

Notation: =

Determine if the following pairs of sets are equal:

$$\{1,2,3,4,5\}$$
 and $\{a,b,c,d,e\}$

$$\{x \mid x \in \mathbb{N} \text{ with } 3 \le x \le 8\} \text{ and } \{3,4,5,6,7,8\}$$

$$\{x \mid x \in \mathbb{N} \text{ with } x \le 2 \text{ and } x \ge 11\} \text{ and } \phi$$

$$\{1,2,3,4,5,6,7,8\}$$
 and $\{1,2,3,...,8\}$

Subsets:

A set A is a subset of the set B if each element of A is also an element of B.

Notation: $A \subseteq B$ *{Think of B as a menu and a subset A as an order from the menu.}*

Fill-in the blanks with either \subseteq or $\not\subseteq$.

Proper Subsets:

A set A is a proper subset of the set B if each element of A is also an element of B, but $A \neq B$.

Notation: $A \subset B$

Fill-in the blanks with either \subset or $\not\subset$.

How many subsets or proper subsets does a set have?

Set A	n(A)	Subsets of A	Proper Subsets of A	# of subsets	# of proper subsets
ϕ	0	ϕ	none	1	0
<i>{a}</i>	1	ϕ , $\{a\}$	φ	2	1
$\{a,b\}$	2	ϕ , $\{a\}$, $\{b\}$, $\{a,b\}$	ϕ , $\{a\}$, $\{b\}$		
$\{a,b,c\}$	3	$\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}$	$\phi, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}$		

Use inductive reasoning to complete the following:

If a set has n elements, then it has _____ subsets.

If a set has *n* elements, then it has _____ proper subsets.

How many subsets are there of the set $\{a,b,c,d,e\}$?

How many proper subsets are there of the set $\{a,b,c,d,e\}$?

A pizza can be ordered with some, none, or all of the following toppings:

 $\left\{pepperoni, sausage, mushroom, onion, peppers, black olives, green olives, hamburger\right\}.$

How many different pizzas are possible?

In this example, what would correspond to the empty set?

