Set Operations and Venn Diagrams:

In a particular problem or situation, the set of all objects under consideration is called a universal set. It is abbreviated with the letter U, and represented in a Venn diagram as a large square or rectangle.

All the objects under consideration

 \boldsymbol{U}

Sets of objects in a universal set are represented by circles or ovals.

Set Intersection:

The intersection of sets A and B, written as $A \cap B$, is the set of elements common to both set A and set B. In other words, it's the objects shared by the two sets.

 $A \cap B$ is represented in a Venn diagram as the shaded region, the region of overlap of the two ovals.

Examples:
$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{2, 3, 4, 5, 7\}$ $C = \{5, 8\}$ $D = \{1, 2, 3\}$

$$B = \{2,3,4,5,7\}$$

$$C = \{5, 8\}$$

$$D = \{1, 2, 3\}$$

List the elements in the following sets:

$$A \cap B$$

$$B \cap C$$

$$A \cap C$$

$$C \cap D$$

$$A \bigcap \phi$$

$$A \cap B \cap C$$

 $C \cap C$

Set Union:

The union of sets A and B, written as $A \cup B$, is the set of elements that are in set A <u>or</u> in set B, <u>or</u> in both. In other words, it's the elements of both sets combined into one.

 $A \cup B$ is represented in a Venn diagram as the shaded region below. It's formed by joining the regions inside the ovals.

Union
Vs
Intersection

Examples:
$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{2, 3, 4, 5, 7\}$ $C = \{5, 8\}$ $D = \{1, 2, 3\}$

$$B = \{2,3,4,5,7\}$$

$$C = \{5, 8\}$$

List the elements in the following sets:

$$A \cup B$$

$$C \bigcup D$$

$$\phi \bigcup D$$

$$A \cap (C \cup D)$$

$$A \cup B \cup C$$

$$(B \cap C) \cup (A \cap D)$$

Set Complement:

The complement of the set A, written A', is the set of all objects in the universe that are <u>not</u> in the set A. In other words it's the opposite of A.

A' is represented in a Venn diagram as the shaded region below. It's the region outside of the oval.

"Well, let's continue with set theory, today we will see the concept of disjoint sets."

Examples:
$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{2, 3, 4, 5, 7\}$ $C = \{5, 8\}$ $D = \{1, 2, 3\}$

$$B = \{2,3,4,5,7\}$$

$$C = \{5, 8\}$$

$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

List the elements in the following sets:

A'

B'

$$(A \cap B)'$$

 $(A \cup B)'$

$$B' \cap C$$

 $(A \cap B)' \cup C$

$$A' \cap B'$$

 $A' \bigcup B'$

Shade the region(s) that is represented by the following set operations.

 $A \bigcup B$

 $A \cap B'$

 $C \cap B$

 $(A \cup B) \cap C'$ Music Blasting From Cars

Music We Want to Hear

 $C \cap (A \cup B)'$

Counting Formula for the Union of Two Sets:

$$n(A \cup B) = x + y + z$$

$$= (x + y) + (y + z) - y$$

$$= n(A) + n(B) - n(A \cap B)$$

So
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
.

Examples:

If
$$n(A)=10$$
, $n(B)=19$, and $n(A\cap B)=5$, then what's $n(A\cup B)$?

If
$$n(A \cup B) = 27$$
, $n(A) = 12$, and $n(B) = 23$, then what's $n(A \cap B)$?