Tree:

It's a connected graph that is efficiently connected, i.e. there are no unnecessary edges.

Properties of Trees:

1. It contains no circuits.

- 2. There is exactly one path joining any two vertices.
- 3. Every edge is a bridge.
- 4. A tree with n vertices has (n-1) edges.

A connected graph that satisfies any one of these four properties must be a tree.

Not a tree-it contains a circuit, there's more than one path from B to C, \overline{CD} is not a bridge, and it doesn't have three edges.

Is a tree-it certainly satisfies all four of the properties.

Subgraph:

It's a graph that consists of some of the vertices and edges of an original graph.

Original Graph

Spanning Tree:

It's a subgraph of a connected graph that contains all of the original vertices and is a tree. The process of producing a spanning tree is

called pruning.

Original Graph

Spanning Tree

Spanning Tree

Spanning Tree

Minimum Spanning Tree:

It's a spanning tree for a weighted connected graph that has the smallest possible weight.

Original Weighted Graph

Minimum Spanning Tree

There is an algorithm for finding a minimum spanning tree.

Kruskal's Algorithm:

3. Find an edge with the next-smallest weight, and include it if it doesn't produce a circuit.

4. Continue the process until all the vertices are included and connected with no circuits.

Apply Kruskal's Algorithm to the following weighted graphs.

Weights	
7	\
10	/
11	/
12	/
14	
15	
17	
18	

Here is a minimum spanning tree.

Weights	
7	/
8	/
10	X
11	/
12	/
14	
15	
17	
18	

