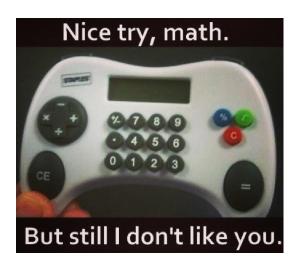

Properties of Logarithms:

For M and N positive numbers and r a real number,

Product Rule:



Expand and simplify:

$$log_5(25x)$$

Compress(or Condense) and simplify:

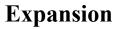
$$log_6 9 + log_6 4$$

I'M 25% FUNNY 85% BAD AT MATH

Quotient Rule:

$$\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$$

Compression


Expand and simplify:

$$log_3\left(\frac{x}{9}\right)$$

Compress and simplify:

$$log_3 2 - log_3 6$$

Power Rule:

$$\log_b(M^r) = r \log_b M$$

Compression

$$log_7(7x^5)$$

Compress:

$$2\log_3 x - 4\log_3 y$$

Expand:
$$log_2 \left[\frac{x^3(x+2)}{(x+3)^2} \right]$$

Compress:
$$3log_5(3x+1)-2log_5(2x-1)-log_5 x$$

$$\ln(ab) = \ln(a) + \ln(b)$$

$$\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

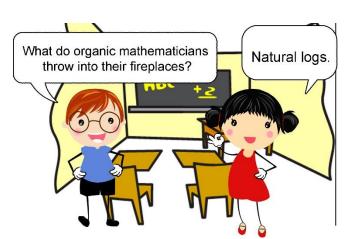
$$\ln\left(a^{b}\right) = b\ln(a)$$

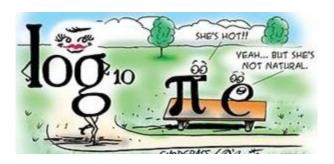
$$\log_b x + \log_b y = \log_b(x \cdot y)$$
$$\log_b x - \log_b y = \log_b\left(\frac{x}{y}\right)$$
$$z \cdot \log_b x = \log_b(x^z)$$

Change of Base Formula:

Suppose that $y = log_b x$. Then $b^y = x$ and therefore $log_a(b^y) = log_a x$. From the Power

Rule, you get $y \log_a b = \log_a x$, and solving for y yields $y = \frac{\log_a x}{\log_a b}$. So


$$\log_b x = \frac{\log_a x}{\log_a b}.$$


Calculators have a logarithm key for base 10, log, called the common logarithm. They also have a logarithm key for base e, ln, called the natural logarithm. e = 2.7182818...

$$\log_b x = \frac{\log x}{\log b}$$

Or

$$\log_b x = \frac{\ln x}{\ln b}$$

Example:

Calculate $log_3 5$ to 3 decimal places.

$$\log_3 5 = \frac{\log 5}{\log 3}$$

Or

$$\log_3 5 = \frac{\ln 5}{\ln 3}$$

