## **Relations and Functions:**

A Relation is a set of ordered pairs of numbers.

# **Examples:**

$$R = \{(1,2),(2,4),(3,5)\}$$

$$S = \{(1,2),(1,3),(2,6)\}$$

# Domain of a Relation:

The set of first numbers

Domain of *R*?

Domain of *S*?



# Range of a Relation:

The set of second numbers

Range of *R*?



Range of *S*?

# Function:

A function is a relation in which each number in the domain is associated with exactly one number in the range.

Is *R* a function?

Is *S* a function?

#### Relations and Functions from equations:

Sometimes relations are represented by an equation. The *x*-values correspond to domain values, and the *y*-values correspond to range values. If for each domain value x, it's possible to uniquely solve for the corresponding range value, y, then the relation represented by the equation is a function.

## Determine if the following relations are functions:

$$x + y = 6$$

$$x = y^2$$

# Relations and Functions from graphs:

Sometimes relations are represented as graphs. The *x*-coordinates are the domain values, and the *y*-coordinates are the range values.



Domain?

Range?

**Function?** 

**Vertical Line Test?** 









Domain?

Range?

**Function?** 





# Domain?

Range?

**Function?** 





Domain? Range? Function?



#### **Function Notation:**

When a relation is a function, there is a special notation for connecting domain values and range values called function notation: f(x). It's frequently used to define a function in terms of a formula.

$$f(x) = 2x$$

$$f(x) = x^2 - 1$$

$$f \text{ is the name of the function of the function that } x \text{ is the function multiplies the input values by 2}$$

$$f(-1), f(0), f(2), f(\frac{1}{2}), f(a)$$

$$g(x) = \begin{cases} x & ; x \le -1 \\ 2x+1; x > -1 \end{cases}$$

$$f(x) = 5x + 6$$
g(-2),g(-1),g(1),g(\frac{1}{2}),g(x-1)

# **Function values from graphs:**

f



$$f(-4), f(-3), f(-2), f(-1), f(0), f(1), f(\frac{5}{2})$$

*x*-intercepts:

y-intercept:

Solve the equations: f(x) = 1,  $f(x) = \frac{3}{2}$ , f(x) = 2

Solve the inequalities:  $f(x) > 1, 0 \le f(x) < 1$ 

### **Domains from function formulas:**

When functions are defined using function notation and a formula, the domain is assumed to be all real values of x so that the formula produces a real number. The things to avoid are division by zero or an even root of a negative number.

$$f(x) = \frac{1}{x^2 + 3x + 2}$$

$$g(x) = \sqrt{1 - 2x}$$

$$h(x) = \frac{\sqrt{x-2}}{x-3}$$

