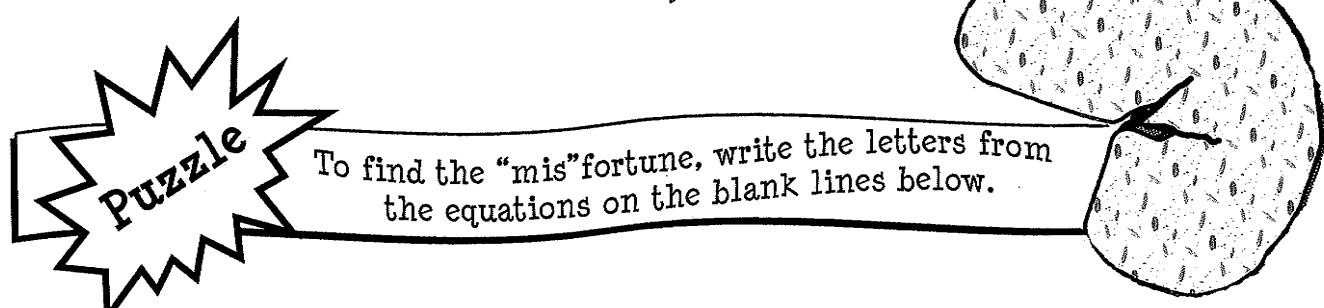


Activity 11: CAN IT BE A MISFORTUNE COOKIE?

(Fill-in all the blanks and solutions!)

If a fortune cookie has a “negative” message, would you call it a “mis”fortune cookie? These fortunes have expressions with negative exponents. Evaluate all the expressions. Then crack the code to read the advice from the big fortune cookie below.


Activity 11: CAN IT BE A MISFORTUNE COOKIE?

(Fill-in all the blanks and solutions!)

If a fortune cookie has a “negative” message, would you call it a “mis”fortune cookie? These fortunes have expressions with negative exponents. Evaluate all the expressions. Then crack the code to read the advice from the big fortune cookie below.

Flags (Evaluation):

- $A = (-\frac{2}{3})^{-1}$ $(A = -1\frac{1}{2})$
- $B = (\frac{1}{3})^{-3}$ $B =$
- $R = (-3) (\frac{1}{3})^{-1}$ $R =$
- $E = (-4)^{-2}$ $E =$
- $C = 4^{-1}$ $C =$
- $M = (-1)^{-99}$ $M =$
- $H = (-2) (-\frac{1}{2})^{-1}$ $H =$
- $F = (-2)^{-3}$ $F =$
- $G = (-\frac{1}{2})^{-3}$ $G =$
- $T = (\frac{1}{12})^{-2} \cdot 4^{-2}$ $T =$
- $N = (-1)^{-100}$ $N =$
- $K = (\frac{1}{2})^{-3}$ $K =$
- $Y = 4^{-1} - 2^{-1}$ $Y =$
- $I = -2 - (\frac{1}{2})^{-1}$ $I =$
- $S = (\frac{1}{12})^{-1} \cdot 4^{-1}$ $S =$
- $U = (\frac{1}{4})^{-1} + (-\frac{1}{2})^{-1}$ $U =$
- $O = 3 - (\frac{1}{3})^{-1}$ $O =$
- $V = (1\frac{1}{2})^{-1} \cdot (\frac{1}{9})^{-1}$ $V =$

--	--	--

9 -9 $-\frac{1}{4}$

--	--	--

1 0 9

--	--

9 0

--	--	--

-8 $\frac{1}{16}$ 9

--	--	--

9 0 0

--	--	--

1 $\frac{1}{16}$ -8 $-1\frac{1}{2}$ 9 -4 6 $\frac{1}{16}$

--	--	--	--

$-1\frac{1}{2}$ 27 0 2 9

--	--	--	--

-1 $-1\frac{1}{2}$ 9 4