CALCULUS I LEARNING GOALS

VINH DANG, PH.D. MATHEMATICS DEPARTMENT, LONE STAR COLLEGE - NORTH HARRIS

ABSTRACT. List of learning goals for all sections of Chapter 1 through 5 and section 6.1 of the book Calculus - OpenStax Volume 1. Each learning goal is accompanied by selected practice exercises from the book.

Important Note:

- The page numbers and the section numbers here correspond to the **downloaded pdf version** of the textbook.
- For extra credit: Only turn in the exercises labeled Assigned Written Exercises.
- Do NOT turn in the exercises labeled **similar odd-numbered exercises**, these are for practice only, and the answers are provided online.
- Do read the suggested examples. They will help you understand the material and solve the exercises.
- At some point in this document, Assigned Written Exercises is abbreviated as AWE, similar odd-numbered exercises is abbreviated as SOE, and Reading is abbreviated as R.
- The answers to the odd-numbered exercises can be found by going to the website https://openstax.org/details/calculus-volume-1, click on View Online and go to the corresponding sections and exercises.

2. Limits

2.1. A Preview of Calculus.

(1) Understand the tangent line problem: be able to find the slopes of the secant lines passing through pairs of points on the graph of a given function and use the slopes of the secant lines to estimate the slope of the tangent line at a point.

Assigned Written Exercises (can be turned in for extra credit): 4, 5, 6 Page 134. Similar example from the book: Read Example 2.1 page 129.

Similar odd-numbered exercises with answers given at the website for the book (for practice only, not to turn in): 1-3 page 134, 13-15 page 135.

(2) Find the average velocities of an object over given time intervals and use the average velocities to estimate the instantaneous velocity at a point of time.

Assigned Written Exercises (can be turned in for extra credit): 20, 21 Page 135. Similar example from the book: Read Example 2.2 page 130.

(3) The area problem: estimate the area between the x-axis and the graph of a function using rectangles.
 Assigned Written Exercises (can be turned in for extra credit): 28, 29 Page 136.
 Reading: Example 2.3 page 132.

2.2. The Limit of a Function.

- Evaluate a limit using a table of functional values.
 Assigned Written Exercises: 36, 37, 38 page 156 and 157. Reading: Example 2.4, 2.5 page 139 and 140.
 - Similar odd-numbered exercises: 35, 41, 43.
- (2) Analyze a limit that fails to exist.

Assigned Written Exercises: 40, 44 page 157 and 158. Reading: Example 2.7 page 143. Similar odd-numbered exercises: 45.

- (3) Use the graph of a function to find one-sided and two-sided limits.
 Assigned Written Exercises: 55, 56, 57, 58 Page 159.
 Reading: Example 2.6 and 2.8 pages 141, 142, 146 and 147.
- (4) Understand infinite limits intuitively.
 Assigned Written Exercises: 78 and 80 page 160.
 Reading: Example 2.9 and 2.11 pg 148, 149, 150, 152 and 153.
 Similar odd-numbered exercises: 77 and 79.

2.3. The Limit Laws.

- (1) Evaluate a limit using limit laws.
 Assigned Written Exercises: 84, 90, 92, 108, 110, 116, 120.
 Reading: Example 2.14, 2.15, 2.16, 2.21, 2.22.
 Similar odd-numbered exercises: 85, 89, 109, 111, 113, 117, 119, 125.

 (2) Evaluate a limit in the indeterminate form 0/0.
 Assigned Written Exercises: 98, 100, 102, 106.
 Reading: Example 2.17, 2.18, 2.19, 2.20, 2.23.
 Similar odd-numbered exercises: 93, 97, 105.
 (3) Evaluate trigonometric limits.
 Assigned Written Exercises: Review Exercise 216 page 214.
 Reading: Example 2.25.
 Similar odd-numbered exercises: 99.
- (4) Evaluate limits using the Squeeze Theorem.
 Assigned Written Exercises: 126 and Review Exercise 224 page 214. Reading: Example 2.24. Similar odd-numbered exercises: 127.

2.4. Continuity.

- Determine whether a function is continuous at a given point. Assigned Written Exercises: 140, 144, 154. Reading: Example 2.26, 2.27 and 2.28 Similar odd-numbered exercises: 139, 141, 143.
- (2) Understand the three types of discontinuities: removable, jump and infinite discontinuity. Be able to classify the type of discontinuity of a function.
 - Assigned Written Exercises: 136, 138, 156. Reading: Example 2.30, 2.31 and 2.32. Similar odd-numbered exercises: 133, 137, 155.
- (3) Understand left and right continuity and continuity over an interval and solve related problems.
 Assigned Written Exercises: 146, 148, 158, 166. (Note: the given interval mentioned in these problems is ℝ)

Reading: Example 2.33, 2.34.

Similar odd-numbered exercises: 145, 147, 157.

(4) Know when to apply and how to apply the Intermediate Value Theorem (IVT).

Assigned Written Exercises: 150, 152, 164.

Reading: Example 2.36, 2.37, 2.38.

Similar odd-numbered exercises: 153, 165.

2.5. The Precise Definition of a Limit.

- (1) Understand the ϵ - δ definition of a limit. Given an ϵ , be able to find the largest possible δ such that the conditional statement in the definition is satisfied.
 - **Assigned Written Exercises: 180, 182, 184, 186.** Similar odd-numbered exercises: 181, 183, 185, 187.

3. Derivatives

3.1. Defining the Derivative.

- (1) Find the slope and the equation of the tangent line to the graph of a function f at the point where
 - x = a using either the definition $m_{tan} = \lim_{x \to a} \frac{f(x) f(a)}{x a}$ or $m_{tan} = \lim_{h \to 0} \frac{f(a + h) f(a)}{h}$. **AWE: 16, 20.** R: Example 3.2 and 3.3 SOE: 17, 19.

(2) Find
$$f'(a)$$
 using the definition $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ or $\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$.

AWE: 24. R: Example 3.5, 3.6. SOE: 23.

- (3) Find f'(a) given the graph of f
 AWE: 40.
 SOE: 39.
- (4) Use the limit definition of the derivative to show that the derivative does not exist at a given point for a given function.

AWE: 42.

SOE: 41, 43.

(5) Find the instantaneous rate of change of a quantity at a given point.

AWE: 36.

R: Example 3.9, 3.10. SOE: 37.

3.2. The Derivative as a Function.

(1) Understand the definition of the derivative as a function. Find f'(x) using the definition.
AWE: 62, 68, 70, 76.
R: Example 3.11 and 3.12.

SOE: 63, 69, 73, 75.

(2) Sketch the graph of the derivative f' use the graph of the original function f.

AWE: 64, 66, 96. R: Example 3.13. SOE: 65, 67.

- (3) Use the graph of f to find f' at given points. AWE: 80
- (4) Understand the relationship between differentiability and continuity. R: Example 3.14.
- (5) Find the second derivative using the definition.

AWE: 82.

R: Example 3.15 and 3.16. SOE: 81, 83.

3.3. Differentiation Rules.

(1) Find derivatives using basic differentiation rules: constant, constant multiple, power rules, sum and difference rules, product and quotient rules.

AWE: 110, 112, 116, 126, 128, 130, 132, 144, 148.

R: Example 3.17, 3.18, 3.19, 3.20, 3.21, 3.24, 3.25, 3.26, 3.27, 3.28, 3.29, 3.30 and 3.32. SOE: 111, 113, 117, 129, 131, 145, 147.

(2) Find the equation of the tangent line to the graph of a function. Determine the x-values at which the slope of the tangent line is satisfied some given condition.

AWE: 120, 140, 142.

R: Example 3.22 and 3.31. SOE: 121, 139, 141.

3.4. Derivatives as Rate of Change.

(1) Apply the derivative to solve applications that involve rates of change: position, velocity and acceleration of moving objects, population growth, marginal cost and revenue.

AWE: 154, 158, 160, 164.

R: Example 3.34, 3.35, 3.36, 3.37, and 3.38. SOE: 155, 159, 161, 165.

3.5. Derivatives of Trigonometric Functions.

(1) Find the derivatives of functions that involve basic trigonometric functions.

AWE: **180**, **182**, **198**. R: Example 3.39, 3.40, 3.41, 3.44. SOE: 181, 183, 197.

(2) Find higher-order derivatives of functions that involve basic trigonometric functions. AWE: 196, 210.

R: 3.45, 3.46. SOE: 211, 213.

3.6. The Chain Rule.

(1) Find derivatives and solve related problems using the Chain Rule.

AWE: 218, 222, 224, 228, 230, 234, 236, 238, 240, 248, 252, 254, 256. R: Example 3.48, 3.49, 3.50, 3.51, 3.52, 3.53, 3.54, 3.55, 3.57, 3.58, 3.59. SOE: 219, 227, 231, 237, 239, 247, 251, 253, 257.

3.7. Derivatives of Inverse Functions.

(1) Apply the Inverse Function Theorem to find the derivative of the inverse function of a function at a point.

AWE: 262, 272, 278, 290. R: Example 3.61. SOE: 261, 273, 277, 291.

(2) Find the derivatives of functions that involve inverse trigonometric functions.

AWE: 280, 284, 288, 296, 298. R: Example 3.65, 3.66, 3.67. SOE: 283, 285, 297, 297, 299.

3.8. Implicit Differentiation.

- (1) Find the derivatives using implicit differentiation.
 AWE: 304, 308, 322, 324.
 R: Example 3.68, 3.69, 3.70, 3.73.
 SOE: 305, 307, 325.
- (2) Find the equation of tangent lines implicitly. AWE: 312, 316, 318, 320.

R: Example 3.71, 3.72. SOE: 313, 317, 319, 321.

4

3.9. Derivatives of Exponential and Logarithmic Functions.

(1) Find the derivative of an exponential function and solve application problems that involve exponential functions.

AWE: 332, 334, 338, 360, 362. R: Example 3.74, 3.75, and 3.76. SOE: 333, 335, 339, 359.

(2) Find the derivative of a logarithmic function and solve related problems.

AWE: 340, 344, 356. R: Example 3.77, 3.78, 3.79, and 3.80. SOE: 341, 343, 345.

(3) Apply the technique of logarithmic differentiation to find the derivative of a function of the form $h(x) = g(x)^{f(x)}$ or to find the derivative of complicated functions with products and quotients in an easier way.

AWE: 346, 350, 352. R: Example 3.81, 3.82, and 3.83. SOE: 347, 349, 353.

4. Applications of Derivatives

4.1. Related Rates.

(1) Solve related rates problems.

AWE: 4, 6, 10, 20, 30, 40. R: Example 4.1, 4.2, 4.3 and 4.4. SOE: 5, 11, 21, 31.

4.2. Linear Approximation and Differentials.

(1) Find the linear approximation of a function at a point and use it to approximate the value of an expression.

AWE: 54, 66. R: Example 4.5, 4.6, and 4.7. SOE: 55, 67.

(2) Compute the differential of a given function and approximate change with differentials.

AWE: 70, 76.

R: Example 4.8 and 4.9.

SOE: 71, 75.

(3) Using differentials to estimate errors. AWE: 82, 84, 86.
R: Example 4.10 and 4.11.
SOE: 83, 85.

4.3. Maxima and Minima.

(1) Determine the critical points of a given function.

AWE: 114, 116. R: Example 4.12. SOE: 113, 115.

(2) Locating absolute extrema of a function over a closed interval.

AWE: 106, 122, 124, 128. R: Example 4.13. SOE: 105, 121, 127.

4.4. The Mean Value Theorem.

- (1) Understand and be able to use Rolle's Theorem.
 - AWE: 182.
 - R: Example 4.14.
- (2) Understand and be able to use the Mean Value Theorem and its corollaries.

AWE: 154, 164, 168, 170, 172, 188. R: Example 4.15 and 4.16.

SOE: 155, 165, 167, 177, 189.

4.5. Derivatives and the Shape of a Graph.

(1) Apply the First Derivative Test to determine the intervals of increasing/decreasing and the local extrema of a given function.

AWE: 202, 206, 210, 216, 226a and 226b, 232a and 232b, 240a and 240b. R: Example 4.17 and 4.18.

SOE: 201, 207, 217, 225a and b, 233 a and b, 239a and b.

(2) Use the second derivative to determine the intervals of concavity or local extrema of a given function.
AWE: 196, 218, 226c and 226d, 232c and 232d, 240c and 240d.
R: Example 4.19, 4.20.
SOE: 217, 225c and d, 233c and d, 239c and d.

4.6. Limits at Infinity and Asymptotes.

(1) Compute limits at infinity and use the result to determine the horizontal asymptote(s) and the end behavior of a function.

AWE: 264, 268, 270, 272, 274.

R: Example 4.21, 4.24, 4.25, 4.26, and 4.27.

SOE: 263, 269, 271, 273.

(2) Use the guidelines in this section to draw the graph of a given function.

AWE: 296, 300, 304.

R: Example 4.28, 4.29, 4.30 and 4.31. SOE: 297, 299, 305.

4.7. Applied Optimization Problems.

(1) Set up and solve optimization problems.
AWE: 316, 320, 322, 334, 336, 344, 350, 354.
R: Example 4.32, 4.33, 4.34, 4.35, 4.36, 4.37.
SOE: 319, 333, 335, 343, 345, 349, 351.

4.8. L'Hôpital's Rule.

(1) Apply L'Hôpital's Rule to find indeterminate limits of the type 0/0, ∞/∞ , $0 \cdot \infty$, $\infty - \infty$, ∞^0 , and 0^0 .

AWE: 356, 360, 362, 370, 374, 380, 382, 390, 392, 394, 402. R: Example 4.38, 4.39, 4.40, 4.41, 4.42, 4.43, and 4.44. SOE: 357, 359, 371, 373, 383, 391, 393, 395.

4.9. Newton's Method.

(1) Approximate a root of a polynomial using Newton's method.
AWE: 410, 414, 426, 434, 436, 452, 464.
R: Example 4.46 and 4.47.
SOE: 407, 415, 425, 435, 453.

(2) Recognize when Newton's method fails. AWE: 448.

R: Example 4.48.

6

4.10. Antiderivatives.

- (1) Find the general antiderivative of a given function. Verify and evaluate indefinite integrals. AWE: 472, 476, 480, 484, 488, 490, 492, 496, 498. R: Example 4.50, 4.51, 4.52. SOE: 471, 477, 481, 485, 487, 493.
- (2) Solve basic initial-value problems.
 AWE: 502, 506, 510, 514, 520.
 R: Example 4.53 and 4.54.
 SOE: 501, 507, 509, 513, 519.

5. INTEGRATION

5.1. Approximating Areas.

(1) Understand sigma notation and be able to use sigma notation and basic summation formulas to evaluate sums.

AWE: 2, 6, 8. R: Example 5.1, 5.2 and 5.3. SOE: 3, 7, 9.

(2) Approximate the area under a curve using either the left-endpoint approximation or right-endpoint approximation.

AWE: 14, 16, 26.

R: Example 5.4.

SOE: 15, 17, 27.

(3) Know what a Riemann sum is. Be able to form and evaluate a Riemann sum for a given function. AWE: 22, 44, 54, 56.

R: Example 5.5 and 5.6. SOE: 23, 45, 53.

5.2. The Definite Integrals.

(1) Understand the definition of the definite integral as the limit of a Riemann sum and solve related problems.

AWE: 62, 66. R: Example 5.7.

SOE: 63, 67.

(2) Understand the relation between area and the definite integral. Evaluate definite integrals using geometry.

AWE: 70, 72, 76, 78, 82. R: Example 5.8, 5.9 and 5.10. SOE: 71, 73, 75, 77, 81.

(3) Apply the properties of the definite integral to solve problems. AWE: 92, 98, 102, 104, 108, 124, 134, 138. R: Example 5.11, 5.12, and 5.13. SOE: 93, 99, 105, 109, 125, 135.
(4) Find the average value of a function using the definite integral.

AWE: 112, 114, 126 (Hint: use 124), 132. R: Example 5.14. SOE: 113, 115, 127.

5.3. The Fundamental Theorem of Calculus.

- (1) Apply the Fundamental Theorem of Calculus Part I to find derivatives and solve related problems.
 AWE: 148, 152, 154, 156, 160, 162.
 R: Example 5.17, 5.18, and 5.19.
 SOE: 149, 153, 155, 157, 161, 163.
- (2) Apply the Fundamental Theorem of Calculus Part II to evaluate definite integrals and solve related problems.
 AWE: 172, 176, 180, 182, 184, 186, 188, 196.
 R: Example 5.20, 5.21, and 5.22.

SOE: 173, 177, 179, 183, 185, 187, 197.

5.4. Integration Formulas and the Net Change Theorem.

(1) Apply the basic integration rules and the Net Change Theorem to solve application problems.

AWE: 216, 220, 224, 226, 230, 232, 238.

R: Example 5.24, 5.25, 5.26 and 5.27.

- SOE: 215, 217, 223, 225, 229, 231.
- (2) Understand the properties of integrals of even and odd functions. R: Example 5.28 and 5.29.

5.5. Substitution.

(1) Apply the method of Integration by Substitution to find indefinite, definite integrals and the area under a curve.

AWE: 266, 270, 276, 280, 282, 284, 292, 296, 314, 316. R: Example 5.30, 5.31, 5.32, 5.33, 5.34, 5.35, 5.36. SOE: 265, 269, 275, 279, 283, 285, 293, 297, 315, 317.

5.6. Integrals Involving Exponential and Logarithmic Functions.

- (1) Integrate functions involving exponential functions and solve application problems.
 AWE: 322, 338, 340, 354, 364, 376.
 R: Example 5.37, 5.38, 5.39, 5.40, 5.41, 5.42 5.43 and 5.44.
 SOE: 323, 339, 341, 377.
- (2) Integrate functions involving logarithmic functions and solve application problems.
 AWE: 330, 334, 344, 350, 358, 362, 372.
 R: Example 5.45, 5.46, 5.47, and 5.48.
 SOE: 329, 335, 345, 349, 355, 359, 363, 373.

5.7. Integrals Resulting in Inverse Trigonometric Functions.

(1) Find integrals resulting in inverse trigonometric functions and solve related problems.
AWE: 392, 394, 396, 402, 406, 412, 414, 424, 428, 432, 434, 436, 438.
R: Example 5.49, 5.50, 5.51, 5.52, 5.53, 5.54.
SOE: 391, 393, 395, 401, 405, 411, 415, 423, 427, 431, 433, 437.

6. Applications of Integration

6.1. Areas between Curves.

(1) Find the area of a region between two curves.
AWE: 2, 4, 6, 8, 10, 16, 22, 32, 36, 48.
R: Example 6.1, 6.2, 6.3, 6.4 and 6.5.
SOE: 1, 3, 5, 7, 11, 17, 25, 37, 57.

8