
Exam 2 Review Math 2414

Section 2.6. Moments and Centers of Mass

• We can find the center of mass of a system of point masses m1, . . . ,mn distributed
along a number line at coordinates x1, . . . , xn. The formula for the center of mass
x is

x =
M

m
,

where M =
n∑

i=1

mixi is the moment of the system and m =
n∑

i=1

mi is the total

mass of the system.

• For point masses distributed in a plane at coordinates (x1, y1), . . . , (xn, yn), the
center of mass is a point with coordinates (x, y) where x and y are given by the
formulas

x =
My

m
, y =

Mx

m
,

here My =
n∑

i=1

mixi is the moment of the system with respect to the y-axis and

Mx =
n∑

i=1

miyi is the moment of the system with respect to the x-axis.

• For a lamina (thin plate) with uniform density ρ bounded by the graphs of two
functions g(x) ≤ y ≤ f(x), a ≤ x ≤ b, the moments are given by

Moment about y-axis: My = ρ

∫ b

a

x (f(x)− g(x)) dx,

Moment about x-axis: Mx = ρ

∫ b

a

1

2

(
(f(x))2 − (g(x))2

)
dx.

The total mass is given by

m = ρ

∫ b

a

(f(x)− g(x)) dx.

And the centroid (center of mass) (x, y) is given by x = My

m
, y = Mx

m
and the ρ

will be canceled when you divide.

• The symmetry principle can make our lives much easier if recognized and applied
correctly. The centroid will always lie on a line of symmetry if the lamina has one.
For example, if the lamina is bounded by the functions y = x2, y = 0, −1 ≤ x ≤ 1,
then the centroid will belong to the y-axis, hence, x = 0. If the lamina is a circle,
then the centroid will be the center. If the lamina is a rectangle, then the centroid
will be the point of intersection of the two diagonals, and so on.

• We can use the Theorem of Pappus to calculate volumes: if we revolve a region
R about a line l, then the volume of the solid obtained is given by

Volume = (Area of R)× (d) ,



where d is the distance traveled by the centroid of R. More explicitly, since the
path travelled by the centroid is a circle, the above formula can be rewritten as

Volume = 2π × (distance from the centroid to rotation axis)︸ ︷︷ ︸
d

×(Area of R).

Section 3.1. Integration by Parts

• The method of integration by parts allows the exchange of one integral for another,
possibly easier, integral.

• The formula for integration by parts is∫
udv = uv −

∫
vdu.

• If we have a definite integral, then the formula is∫ b

a

udv = uv
∣∣∣b
a
−
∫ b

a

vdu

• The method of integration by parts is often used to integrate functions of the
form xn sin(x), xn cos(x), xnex, xn lnx, enx sin(mx), etc. To apply integration by
parts, we normally want to choose u to be a function that will become simpler
when differentiated and choose dv to be something that can be readily integrated.

• The acronym LIATE can often help to take some of the guess work out of our
choices for u and dv. This acronym stands for Logarithmic functions, Inverse
Trigonometric Functions, Algebraic Functions, Trigonometric functions, Exponential
Functions. The type of function that appears first in the list should be our choice
for u. For example, the integral

∫
xn sin(x)dx has an Algebraic Function xn and a

Trigonometric Function sin(x). Because A comes before T in LIATE, we choose
u = xn and dv = sin(x)dx.

• Integration by parts is also useful for integrating inverse functions sin−1 x, cos−1 x,
tan−1 x, ln(x) or functions involving these as factors. In these cases, we should
choose u = sin−1 x, or u = cos−1 x or u = tan−1 x or u = ln(x), even if there are
no other factors in the integrand, i.e., we can choose dv = dx.

Section 3.2. Trigonometric Integrals

• For

∫
sinn(x) cosm(x)dx

– If m is odd, we save a cosine factor, use the identity cos2(x) = 1 − sin2(x)
to convert the rest of the integrand to a function of sine only and make the
substitution u = sin(x).

– If n is odd, we save a sine factor, use the identity sin2(x) = 1 − cos2(x) to
convert the rest of the integrand to a function of cosine only and make the
substitution u = cos(x).

– If both m and n are even, we use the power reduction formulas

sin2(x) =
1− cos(2x)

2
and cos2(x) =

1 + cos(2x)

2
to change the integrand into something we can integrate.



• For

∫
tann(x) secm(x)dx

– If m is even, we save a factor of sec2(x), use the identity sec2(x) = tan2(x)+1
to convert the rest of the integrand to a function of tangent only and make
the substitution u = tan(x).

– If n is odd, we save a factor of sec(x) tan(x), use the identity tan2(x) =
sec2(x)− 1 to convert the rest of the integrand to a function of secant only
and make the substitution u = sec(x).

– For

∫
tann(x)dx, convert one tan2 x = sec2 x− 1 and split the problem into

two integrals.

– The following formulas are very helpful∫
tan(x)dx = ln | sec(x)|+ C and

∫
sec(x)dx = ln | sec(x) + tan(x)|+ C.

• For

∫
sin(nx) cos(mx)dx,

∫
sin(nx) sin(mx)dx,

∫
cos(nx) cos(mx)dx. Use the

product-to-sum formulas.

Section 3.3. Trigonometric Substitution

• If the integrand involves the expression
√
a2 − b2x2, use the trig substitution x =

a
b

sin θ, then dx = a
b

cos θdθ, and
√
a2 − b2x2 = a cos θ and you can convert the

integrand to a trig function of θ. When you finish integrating the function, use
geometry or trig identities to express the answer in terms of x.

• If the integrand involves the expression
√
a2 + b2x2, use the trig substitution x =

a
b

tan θ, then dx = a
b

sec2 θdθ and
√
a2 + b2x2 = a sec θ.

• If the integrand involves the expression
√
b2x2 − a2, use the trig substitution x =

a
b

sec θ, then dx = a
b

sec(θ) tan(θ)dθ and
√
b2x2 − a2 = a tan θ.

• If the integrand involves
√
ax2 + bx+ c, use the method of completing the square

to get it in the form
√
a(x− h)2 + k. Factor out the a and apply the substitution

u = x− h will take us to one of the three forms above.

• Avoid using trig substitution when a regular u-substitution is possible.

Section 3.4. Partial Fractions

• A rational function is a fraction of polynomials. Specifically, it is a function of

the form f(x) =
P (x)

Q(x)
where P and Q are polynomials. The method of Partial

Fractions Decompostion can be used to break down a rational function into a sum
of simpler rational functions that can be integrated using previous techniques.

• Before applying partial fractions decomposition, we must make sure that the
degree of the numerator is less than the degree of the denominator. If not, we
need to perform long division first and then perform the decomposition.



• The form the decomposition takes depends on the type of factors in the denomi-
nator. The types of factors include nonrepeated linear factors, repeated linear fac-
tors, nonrepeated irreducible quadratic factors and repeated irreducible quadratic
factors.

– Non repeated linear factors in the denominator Q(x):

Q(x) = (a1x+ b1)(a2x+ b2) . . . (amx+ bm).

In this case, the decomposition takes the form

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ . . .+

Am

amx+ bm
.

Then we must determine the contants A1, A2, . . . Am and integrate the right
hand side.

– If Q(x) contains a repeated linear factor, say the factor (a1x+b1) get repeated
r times: that is (a1x+ b1)

r occurs in Q(x). Then instead of the single term
A1

a1x+b1
in the right hand side, we will have

B1

a1x+ b1
+

B2

(a1x+ b1)2
+ . . .+

Br

(a1x+ b1)r
.

– Nonrepeated irreducible factors: If Q(x) contains an irreducible quadractic
factor ax2 + bx+ c (irreducible just means you cannot factor it over the real
numbers) and it is not repeated, then the right hand side of the decomposi-
tion will have a term of the form

Ax+B

ax2 + bx+ c
.

To integrate this term, we need to complete the square in the denominator
and turn it into the form∫

Cu+D

u2 + k2
= C

∫
u

u2 + k2
+D

∫
1

u2 + k2
.

We can integrate the first term in the right hand side by a u-substitution
and integrating the second term results in an inverse trig function.

– If Q(x) contains a repeated irreducible quadratic factor (ax2 + bx+ c)r, then
instead of the single term Ax+B

ax2+bx+c
in the decomposition, we will have

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ . . .

A1x+B1

(ax2 + bx+ c)r
.


