
Exam 3 Review Math 2414

Section 3.6. Numerical Integrations

• This section addresses two important problems: how can we estimate the value of
a definite integral when the closed form of the antiderivative is hard to find and
how can we approximate the error of our estimation?

• Three commonly used methods for numerical integration are the midpoint rule,
the trapezoidal rule and the Simpson’s rule.

• The midpoint rule approximates definite integrals using rectangular regions. To

approximate a definite integral

∫ b

a

f(x)dx using the midpoint rule, we divide the

interval [a, b] into n subintervals, each of which has the same length ∆x =
b− a

n
.

The endpoints of these subintervals are x0 = a, x1 = x0 + ∆x, . . . , xi = x0 +

i∆x, . . ., xn = b. Let mi =
xi−1 + xi

2
be the midpoint of the ith subinterval

[xi−1, xi]. The formula for the midpoint rule is

Mn =
n∑

i=1

f(mi)∆x =
n∑

i=1

f

(
xi−1 + xi

2

)
∆x.

• The trapezoidal rule approximates definite integrals using trapezoids rather
than rectangles. The formula for the trapezoidal rule is

Tn =
∆x

2

f( x0︸︷︷︸
a

) + 2f(x1) + 2f(x2) + . . . + 2f(xn−1) + f( xn︸︷︷︸
b

))

 .

Using summation notation, the formula is

Tn =
∆x

2

(
f(a) + f(b) + 2

n−1∑
i=1

f(xi)

)
.

• Simpson’s rule approximates definite integrals using areas under parabolas
rather than areas of trapezoids or rectangles. The formula for Simpson’s rule
is

Sn =
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . . + 2f(xn−2) + 4f(xn−1) + f(xn)) .

Keep in mind that n must be even to use Simpson’s rule.

• In practice, if we estimate the value of a definite integral using one of the above
techniques, we are doing so because we cannot compute the exact value of the
integral itself easily. Therefore, it is often helpful to be able to determine an
upper bound for the error in an approximation of an integral. The following
formulas provide error bounds for each of the rules.



• Error bound (error estimate) for the midpoint rule

|EMn| = Error in Mn ≤
M(b− a)3

24n2
,

where |f ′′(x)| ≤M on [a, b]. In other words, M can be taken to be the maximum
value of |f ′′(x)| over the interval [a, b].

• Error bound (error estimate) for the trapezoid rule

|ETn| = Error in Tn ≤
M(b− a)3

12n2
,

where |f ′′(x)| ≤M on [a, b].

• Error bound (error estimate) for the Simpson’s rule

|ESn| = Error in Sn ≤
M(b− a)5

180n4
,

where |f (4)(x)| ≤M on [a, b]. In other words, M can be taken to be the maximum
value of |f (4)(x)|, the absolute value of the fourth derivative of x, over the interval
[a, b].

You will encounter two types of problem that involve these formulas for error
bounds: to estimate the error of the calculation for a particular value of n, or to
find a value for n that gives an error no more than some stated value.

Section 3.7. Improper Integrals

• There are two types of improper integrals.

– Integrals of continuous functions over infinite intervals:∫ ∞
a

f(x)dx,

∫ b

−∞
f(x)dx,

∫ ∞
−∞

f(x)dx.

– Integrals of functions over an interval for which the function has an infinite
discontinuity at an endpoint.∫ b

a

f(x)dx,

∫ a

c

f(x)dx,

where f has an infinite discontinuity at a.

• To calculate an improper integral, we must turn it into a limit.∫ ∞
a

f(x)dx = lim
t→∞

∫ t

a

f(x)dx.

∫ b

−∞
f(x)dx = lim

t→−∞

∫ b

t

f(x)dx.



∫ ∞
−∞

f(x)dx =

∫ 0

−∞
f(x)dx +

∫ ∞
0

f(x)dx = lim
t→−∞

∫ 0

t

f(x)dx + lim
t→∞

∫ t

0

f(x)dx.

If f has an infinite discontinuity at the endpoint a, then∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx.∫ a

c

f(x)dx = lim
t→a−

∫ t

c

f(x)dx.

• Watch out for infinite discontinuities in the middle of the interval. You must
split the integral at the discontinuities in that case. For example, if we want to

integrate

∫ 1

−1

1

x3
dx, we have to split the integral at 0 because the integrand

1

x3
is

discontinuous at x = 0. So,∫ 1

−1

1

x3
dx =

∫ 0

−1

1

x3
dx +

∫ 1

0

1

x3
dx.

Now we have two improper integrals of the second type that we need to deal with.
Note that ∫ 0

−1

1

x3
dx = lim

t→0−

∫ t

−1

1

x3
dx = lim

t→0−

(
− 1

2t2
+

1

2

)
=∞.

This is sufficient to conclude that the original integral diverges. If we had not
noticed the discontinuity at x = 0 and evaluate the original integral “as usual,”

we would have gotten

∫ 1

−1

1

x3
dx = 0 which is incorrect.

• The convergence or divergence of an improper integral may be determined by
comparing it with the value of an improper integral for which the convergence or
divergence is known.

• A very useful result about improper integral to keep in mind is∫ ∞
1

1

xp
dx is convergent if p > 1 and is divergent if p ≤ 1.

Section 5.1. Sequences

• An infinite sequence {an} is an ordered list of numbers a1, a2, a3, . . ..

• We say that a sequence coverges to a real number L if we can make the terms
an as close to L as we like by taking n sufficiently large. In this case, we write
lim
n→∞

an = L or an −→ L and say that the sequence {an} is a convergent se-

quence. Otherwise, we say that {an} diverges or {an} is a divergent sequence.

• Many sequences we deal with are given by an explicit formula for the nth term,
an = f(n). For such sequences, if lim

x→∞
f(x) = L, then the limit of the sequence

is lim
n→∞

an = L as well. This observation is useful because we can use everything

we know about limits of functions to find limits of sequences. And of the many
ways to find limits of functions, L’Hopital rule is an effective tool, so you should
expect to use it.



• We can also find limits of sequences by using the Squeeze Theorem: If an ≤ bn ≤ cn
and lim

n→∞
an = lim

n→∞
cn = L for some real number L, then limn→∞ bn = L.

• A sequence is bounded above (resp. below) if there is a number M such that
an ≤ M (resp. an ≥ M) for all n. We say that a sequence is bounded if it is
bounded above and below.

• A sequence is eventually increasing (resp. decreasing) if an ≤ an+1 (resp. an ≥
an+1) for all n ≥ N0. We say that a sequence is monotonic if it is either (even-
tually) increasing or decreasing. Note that if a sequence is given by an explicit
formula an = f(n), we can check whether it is evantually increasing or decreasing
by considering the first derivative f ′(n).

• Every bounded, monotonic sequence is convergent.

• It is useful to keep in mind the following limits:

– If r is a real number and −1 < r < 1, then rn −→ 0. If r = 1, then rn −→ 1,
obviously. If r > 1 or r ≤ −1, then the sequence rn is divergent.

– If c is any real, positive number, then
1

nc
−→ 0.

– n
1
n −→ 1.

–
(

1 +
c

n

)n
−→ ec.

The third and fourth limits are obtained by using L’Hopital rule.

Section 5.2. Infinite Series

• An infinite series is a sum of infinitely many terms and is written in the form

∞∑
n=1

an = a1 + a2 + a3 + . . . .

The numbers a1, a2, . . . are called the terms of the series. The value of an infinite
series is defined in terms of the limit of the sequence of partial sums {Sk} where

Sk =
k∑

n=1

an = a1 + a2 + . . . + ak,

Sk is called the kth partial sum of the series, it is the sum of the first k terms of
the series.

The series converges if the sequence {Sk} converges, in which case, the sum of the
series is defined to be

∞∑
n=1

an = lim
k→∞

Sk.

There are some particular types of series that we should keep in mind.



• The geometric series
∞∑
n=1

arn−1 converges if the common ratio r satisfies |r| < 1.

It diverges if |r| ≥ 1. For |r| < 1, the sum of the series is

∞∑
n=1

arn−1 =
a

1− r
.

In words, for a convergent geometric series, the sum of the series is
first term

1− common ratio
.

For example, the series
∞∑
n=1

5

(
−2

3

)n−1

is a geometric series with common ratio

r = −2
3

and the first term is 5. Hence, it converges to
5

1−
(
−2

3

) = 3.

The series
∞∑
n=1

e2n =
∞∑
n=1

e2(e2)n−1 is a geometric series with common ratio r =

e2 > 1. Hence, it diverges.

• A series of the form

∞∑
n=1

[bn − bn+1] = [b1 − b2] + [b2 − b3] + [b3 − b4] + . . . + [bn − bn+1] + . . .

is called a telescoping series. The kth partial sum of this series is given by

Sk =
k∑

n=1

[bn − bn+1] = b1 − bk+1.

The series will converge if and only if lim
k→∞

bk+1 exists (as a finite number). In that
case,

∞∑
n=1

[bn − bn+1] = lim
k→∞

Sk = lim
k→∞

(b1 − bk+1) = b1 − lim
k→∞

bk+1.

For example, the series
∞∑
n=1

1

n(n + 1)
=

∞∑
n=1

(
1

n
− 1

n + 1

)
is a telescoping series.

The kth partial sum is

Sk =
k∑

n=1

(
1

n
− 1

n + 1

)
= 1− 1

k + 1
.

Hence, the sum of the series is

∞∑
n=1

1

n(n + 1)
= lim

k→∞
Sk = lim

k→∞

(
1− 1

k + 1

)
= 1.

We have to be careful, not every telescoping series converges. For example, the

series
∞∑
n=1

ln
n

n + 1
=
∞∑
n=1

[ln(n)− ln(n+ 1)] is a telescoping series. The kth partial



sum is

Sk =
k∑

n=1

[ln(n)− ln(n + 1)] = ln(1)− ln(k + 1) = − ln(k + 1).

Since lim
k→∞

Sk = lim
k→∞

(− ln(k + 1)) = −∞, the series diverges.

• The harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ . . .

diverges.

Section 5.3. The Divergence and Integral Tests

• If lim
n→∞

an 6= 0 or lim
n→∞

an does not exist, the series
∞∑
n=1

an diverges. This is called

the Divergence Test. This is an excellent test to start with because the limit is
often easy to calculate.

Warning: if the limit is zero, the Divergence Test tells you nothing.
The series may converge or diverge. You must try some other test.

For example, the series
∞∑
n=1

e1/n
2

diverges because the limit of the terms is lim
n→∞

an =

lim
n→∞

e1/n
2

= e0 = 1. On the other hand, for the series
∞∑
n=1

1

n
, the limit of the terms

is lim
n→∞

an = lim
n→∞

1

n
= 0. This does not imply that the series converges. As a mat-

ter of fact, we have seen that this is the harmonic series and it diverges.

• The Integral Test: If
∞∑
n=1

an is a series with an = f(n) and f is a function which

satisfies all of the following requirements:

– f is continuous on [1,∞)

– f is positive on [1,∞)

– f is decreasing on [1,∞)

then the series
∞∑
n=1

an and the improper integral

∫ ∞
1

f(x)dx either both converge

or both diverge. In other words, if we know that

∫ ∞
1

f(x)dx is convergent, then

the series
∞∑
n=1

an is convergent. If

∫ ∞
1

f(x)dx is divergent, then the series
∞∑
n=1

an

is divergent.

(Note: the interval does not have to be strictly [1,∞), as long as an = f(n) for
n ≥ N and f satisfies all the above requirements on the interval [N,∞) for some
natural number N , the integral test will still apply.)



The integral test is handy if the function associated with the series can be inte-
grated without too much difficulty.

• If the integral test can be applied, we can also estimate the remainder (the tail) of

the series. More specifically, suppose that we use the N th partial sum SN =
N∑

n=1

an

to estimate the sum of the infinite series
∞∑
n=1

an. Then SN is accurate up to an

error RN =
∞∑
n=1

an−SN =
∞∑

n=N+1

an. The integral test can help us find an estimate

for RN : ∫ ∞
N+1

f(x)dx < RN <

∫ ∞
N

f(x)dx.

For example, suppose we want to use the 5th partial sum S5 to approximate the

convergent infinite series
∞∑
n=1

1

(2n + 1)3
. We have

S5 =
5∑

n=1

1

(2n + 1)3
=

1

27
+

1

125
+

1

343
+

1

729
+

1

1331
≈ 0.0050076.

How close is this approximation? Of course, we don’t know the exact error because
if the sum of the infinite series is easy to calculate, there would be no need for
the approximation. By the above formula, the error R5 is bounded in between
the following 2 numbers∫ ∞
5

1

(2x + 1)3
dx = lim

t→∞

∫ t

5

1

(2x + 1)3
dx = lim

t→∞

(
1

484
− 1

4(2t + 1)2

)
=

1

484
≈ 0.002066,

and∫ ∞
4

1

(2x + 1)3
dx = lim

t→∞

∫ t

4

1

(2x + 1)3
dx = lim

t→∞

(
1

324
− 1

4(2t + 1)2

)
=

1

324
≈ 0.003086,

that is, 0.002066 < R5 < 0.003086.

• You will encounter two types of problem that involve these formulas for error
bounds: to find the error bounds of the calculation for a particular value of n, or
to find the least value for n that gives an error no more than some stated value.

• We can use the integral test to show that the p-series
∞∑
n=1

1

np
is convergent if p > 1

and it is divergent if p ≤ 1. This is a very useful result to keep in mind.

Section 5.4. Comparison Tests

• We can use the comparison test to determine the convergence and divergence
for many series by comparing them with geometric series or p-series, or series that
we know exactly when they converge or diverge. The key here is that the series
must have positive terms and if 0 ≤ an ≤ bn for all n ≥ N , then



– If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

– If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

• The comparison test works very well if we can find a comparable series satisfying
the requirement of the test. However, sometimes it may be difficult to find a series
whose terms are all less than or greater than the series we deal with. In which
case, if we can just find a series which “behaves like” the series we deal with, we
can use the limit comparison test. We just need to find the limit

lim
n→∞

an
bn

.

If the limit is finite and positive, then both series converge or both diverge.
Since we already know about one of them, you then know about the other.

Section 5.5. Altenating Series Test

• An alternating series is a series whose terms alternate between positive and
negative values. An alternating series has the form

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + . . .

or
∞∑
n=1

(−1)nbn = −b1 + b2 − b3 + b4 − . . .

where bn ≥ 0.

• An alternating series of one of the above forms converges if the following two
requirements are satisfied:

– limn→∞ bn = 0 and

– 0 ≤ bn+1 ≤ bn for all n

• If an alternating series converges and we use the N th partial sum SN to approxi-
mate the sum, then the remainder RN is bounded by

|RN | ≤ bN+1.

For example, the alternating series
∞∑
n=1

(−1)n+1

n2
converges by the alternating series

test. If we approximate the infinite sum by the 10th partial sum S10, then the
remainder (error in this approximation) is bounded by

|R10| ≤ b11 =
1

112
≈ 0.008625,

that is, the error in this approximation is at most 0.008625.



• A series
∑

an converges absolutely if the series of absolute values
∑
|an| con-

verges. On the other hand, a series
∑

an may converge, but the absolute values
series

∑
|an| may diverge. In which case, we say that the original series

∑
an

converges conditionally.

• For example, the series
∑
n=1

(−1)n+1

n
converges by the alternating series test. How-

ever, the absolute values series is
∞∑
n=1

1

n
is the harmonic series which we know to

be divergent. Therefore, we say that the original series
∑
n=1

(−1)n+1

n
converges

conditionally.

On the other hand, the series
∑
n=1

(−1)n+1

n2
converges by the alternating series test

as well. The absolute values series is
∑
n=1

1

n2
converges because it is a p-series

with p = 2 > 1. Therefore, we say that the original series
∑
n=1

(−1)n+1

n2
converges

absolutely.

• Note that if
∑
|an| converges, then

∑
an converges.

Section 5.6. Ratio and Root Tests

• Ratio Test: If

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L,

then the series
∑

an converges absolutely if L < 1 and the series diverges if L > 1.
If L = 1, the test fails, that is, it does not provide any information and we have
to use something else. This test is very useful for series whose terms involve
factorials.

• Root Test: If
lim
n→∞

n
√
|an| = L,

then the series
∑

an converges absolutely if L < 1 and the series diverges if L > 1.
If L = 1, the test fails. This test works really well when there are powers of n in
the terms an.

Note: Test 3 does NOT cover section 5.6. Section 5.6 is covered in Test 4.
However, it is included here because it the last section of chapter 5.


