FINITE MATHEMATICS

for Business, Economics, Life Sciences, and Social Sciences

Barnett Ziegler Byleen

Chapter 8

Probability

Section 4 Bayes' Formula

ALWAYS LEARNING

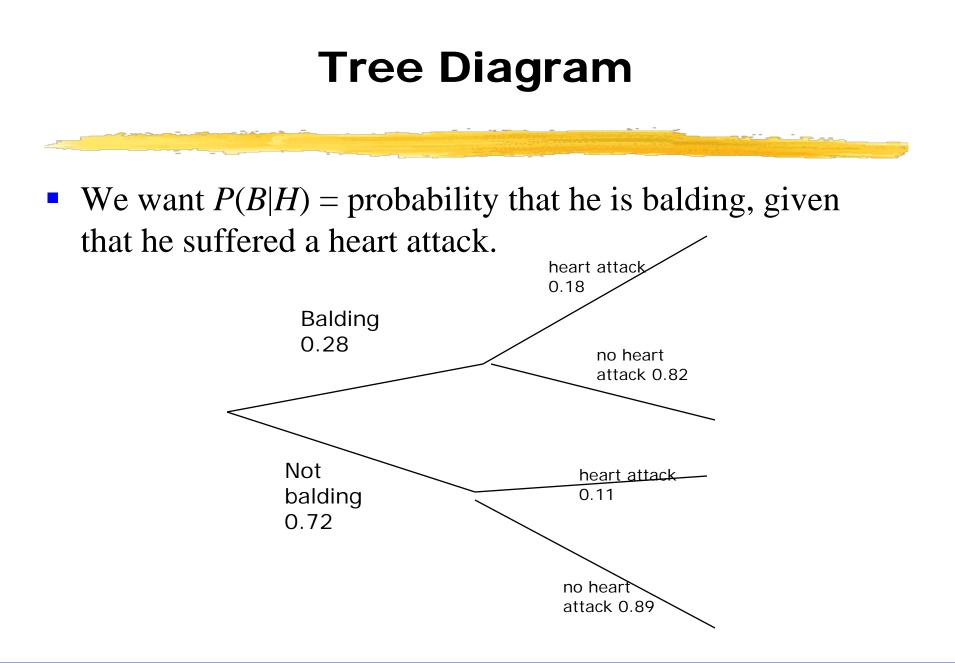
Copyright © 2015, 2011, and 2008 Pearson Education, Inc.

Learning Objectives for Section 8.4 Bayes' Formula

- The student will be able to solve problems involving finding the probability of an earlier event conditioned on the occurrence of a later event using Bayes' Formula.
- The student will be able to solve problems of the above type using a probability tree.

Probability of an Earlier Event Given a Later Event

A survey of middle-aged men reveals that 28% of them are balding at the crown of their head. Moreover, it is known that such men have an 18% probability of suffering a heart attack in the next 10 years. Men who are not balding in this way have an 11% probability of a heart attack. If a middle-aged man is randomly chosen, what is the probability that he is balding, given that he suffered a heart attack? See tree diagram on next slide.



ALWAYS LEARNING

4

PEARSON

Derivation of Bayes' Formula

$$P(B \mid H) = \frac{p(B \cap H)}{p(H)}$$

$$p(H) = p(B \cap H) + p(NB \cap H)$$

$$p(H) = p(B)p(H \mid B) + p(NB) \cdot p(H \mid NB)$$

$$P(B \mid H) = \frac{p(B \cap H)}{p(B)p(H \mid B) + p(NB) \cdot p(H \mid NB)}$$

Copyright © 2015, 2011, and 2008 Pearson Education, Inc.

Solution of Problem

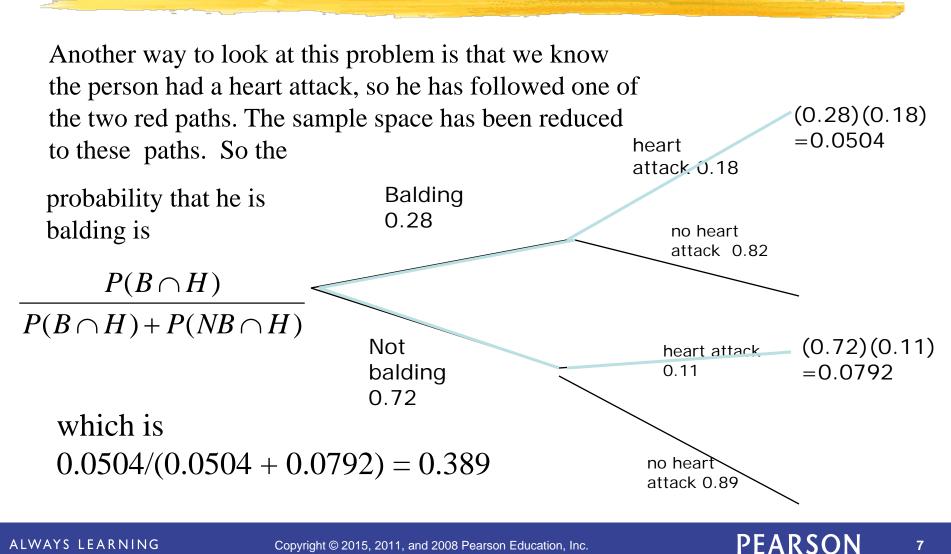
$$P(B \mid H) = \frac{p(B \cap H)}{p(B)p(H \mid B) + p(NB) \cdot p(H \mid NB)}$$

$$p(B \mid H) = \frac{p(B) \cdot p(H \mid B)}{p(B) p(H \mid B) + p(NB) \cdot p(H \mid NB)}$$

 $p(B \mid H) = \frac{0.28 \cdot (0.18)}{0.28(0.18) + 0.72 \cdot (0.11)} = 0.389$

Copyright © 2015, 2011, and 2008 Pearson Education, Inc.

Another Method of Solution



Summary of Tree Method of Solution

You do not need to memorize Bayes' formula. In practice, it is usually easier to draw a probability tree and use the following:

Let U_1, U_2, \dots, U_n be *n* mutually exclusive events whose union is the sample space *S*. Let *E* be an arbitrary event in *S* such that $P(E) \neq 0$. Then

 $P(U_1|E) = \frac{\text{product of branch probabilities leading to } E \text{ through } U_1}{\text{sum of all branch products leading to } E}$

```
Similar results hold for U_2, U_3, \ldots U_n
```