Anti Perivative. Tuesday, August 8, 2017 10:07 AM

Definition of an exhibitivative of a function.

$$f:$$
 function defined on an interval I.
A function F is an antidevivative of f on I if
 $F'(x) = f(x)$ for every x in I.
E.g: $f(x) = x$. defined on $(-\infty, \infty)$
Find an antidevivative for f .
 $F(x) = \frac{x^2}{2}$. $F'(x) = x = f(x)$
 $F(x) = \frac{x^2}{2}$ is an antidevivative of $f(x) = x$
 $G(x) = \frac{x^2}{2} + 10$. $G'(x) = f(x)$
 $H(x) = \frac{x^2}{2} + \pi$ i $H'(x) = f(x)$
Any function of the form $F(x) = \frac{x^2}{2} + C$, where (in
a constant is an antidevivative of $f(x) = x$
Theorem: If $F(x)$ and $G(x)$ are 2 different antidevivation
of $f(x)$, then $F(x) = G(x) + C$.
Therefore, if $F(x)$ is an antidevivative of $f(x)$ has the form
 $F(x) + C$; (: constant .

E.g. Find the general antidevisitive of the given function.
(1)
$$f(x) = x^2$$
.
 $F(x) = \frac{x^3}{3} + C$
In general. $f(x) = x^n$.
 $F(x) = \frac{x^4}{3} + C$
In general. $f(x) = x^n$.
 $F(x) = \frac{x^{n+1}}{n+1} + C$.
The most general antiderivative for $f(x) = x^n$ where n is any real number; $n \neq -1$ is:
 $F(x) = \frac{x^{n+1}}{n+1} + C$.
Consider the case where $n = -1$.
 $f(x) = x^{-1} = \frac{1}{x}$
 $o F(x) = \ln|x| + C$
 $f(x) = cosx$, $F(x) = nowx + C$
 $f(x) = cosx + C$
 $f(x) = x^n + C$
Important Notation: notation for indefinite integral.
 $f(x) = x^{-1} = \frac{1}{x}$
 $f(x) = x^{-1} = \frac{1}{x}$
 $f(x) = x^{-1} = \frac{1}{x}$
 $f(x) = cosx + C$
 $f(x) = x^n + C$

integral nign

$$\int x \, dx = \frac{x^2}{2} + C \cdot \int x \ln x \, dx = -\cos x + C \cdot \\ Table of useful indefinite integral $\cdot \\ Table of useful indefinite integral \\ Table of useful indefinite integral $\cdot \\ Table of useful indefinite integral \\ Table of useful indefinite integral $\cdot \\ Table of useful indefinite integral \\$$$$$$$$$$$$$$

Useful properties of anomy minimum of

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$$
Note: We DOMOT have:

$$\int f(x) \cdot g(x) dx = \int f(x) dx \cdot \int g(x) dx$$

$$\int \frac{f(x)}{g(x)} dx = \int f(x) dx$$

$$\int g(x) dx = \int f(x) dx$$

$$\int c \cdot f(x) dx = c \int f(x) dx$$

$$\int 2017 \cdot e^{x} dx = 2017 \int e^{x} dx = 2017 e^{x} + C.$$
E.x. Find the given indefinite integral
(1)
$$\int (7x^{2/5} + 8x^{-4/5}) dx$$
(2)
$$\int (2ninx - nec^{2}x) dx$$
(3)
$$\int e^{2} dx = e^{2} \cdot x + C$$
(4)
$$\int (4nx - 4nx) dx$$
(5)
$$\int (x+1)(2x-1) dx$$
(6)
$$\int \frac{2n^{5} - \sqrt{x}}{x} dx$$

* $\widehat{\mathcal{F}} \int \frac{2 + x^2}{1 + x^2} dx$ Solved in lum.

Basic Initial Value Problems.
E.g. Find the function
$$f(x)$$
 given that
 $f'(x) = \frac{2}{x^2} - \frac{x^2}{2}$.
 $f(1) = 0$
Sol:
 $f(x) = \int (\frac{2}{x^2} - \frac{x^2}{2}) dx = \int (2 \cdot x^{-2} - \frac{x^2}{2}) dx = 2 \cdot \frac{x^{-1}}{-1} - \frac{x^3}{6} + C$
 $f(x) = -\frac{2}{x} - \frac{x^3}{6} + C$
 $f(1) = 0 \longrightarrow -\frac{2}{1} - \frac{4}{6} + C = 0$
 $-2 - \frac{1}{6} + C = 0$
 $-2 - \frac{1}{6} + C = 0$
 $f(x) = -\frac{2}{x} - \frac{x^3}{6} + \frac{13}{6}$.
E.g. Find $f(x)$ given:
 $f'(x) = 2e^x + 3ninx$
 $f(0) = 0 : f(\pi) = 0$
 $f'(x) = \int (2e^x + 3ninx) dx = 2e^x - 3aonx + C_1$.
 $P(x) = (2n^x - 3conx + C_1) dx$

$$f(x) = \int (2e^{x} - 3\cos x + \zeta_{1}) dx$$

$$f(x) = 2e^{x} - 3\sin x + \zeta_{1} + \zeta_{2}$$

$$f(0) = 2e^{0} - 3\sin 0 + \zeta_{1} + \zeta_{2} = 0$$

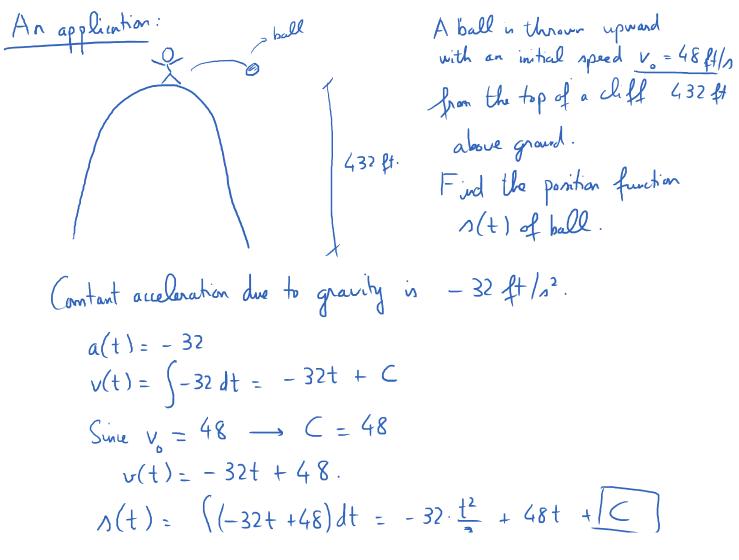
$$2 + \zeta_{2} = 0 \longrightarrow \zeta_{2} = -2$$

$$f(\pi) = 2e^{\pi} - 3\sin(\pi) + \zeta_{1} + \pi - 2 = 0$$

$$2e^{\pi} + \zeta_{1} + \pi - 2 = 0$$

$$\zeta_{1} + \pi = 2 - 2e^{\pi} + \zeta_{1} = \frac{2 - 2e^{\pi}}{\pi}$$

$$f(x) = 2e^{x} - 3\sin x + \frac{2 - 2e^{\pi}}{\pi} + x - 2$$



Antiderivatives Page 6

$$\Lambda(t) = \int (-32t + 48) dt = -32 \cdot \frac{t^2}{2} + 48t + \boxed{C}$$
$$= \boxed{-16t^2 + 48t + 432}$$

Tuesday, August 8, 2017 11:10 AM

