3.8. Implicit Differentiation
Wednesday, July 26, 2017 8:08 AM Find Derivatives Implicitly. y = formula in x (explicit) Sofar, $y = x^2 + 2x - 3$. Find $\frac{dy}{dx}$ - Explicit Differentiation equation: $x^2 + y^2 = 25$. Impliat: y is given implicitly in terms of x

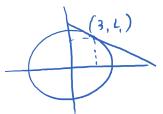
How dowe find dy?

Implicit Differentiation: x=3; y=4

Given $(x^2 + y^2 = 25)$. Find $\frac{dy}{dx}$?

Take the derivative with respect to x of both order:

$$\frac{d}{dx}\left(x^2+y^2\right)=\frac{d}{dx}\left(25\right)$$


$$\frac{d}{dx}(x^2) + \frac{d}{dx}(y^2) = 0$$

$$2x + 2y \frac{dy}{dx} = 0$$

$$2y\frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{-2x}{2y} = \frac{dy}{dx} - \frac{x}{y}$$

dy = - 3 / Slope of tangent line to
the curve
$$x^2 + y^2 = 25$$
 at $(3,4)$

$$\frac{1}{5}$$
 = $\frac{1}{2}$ = $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ × .

$$\frac{d}{dx}\left(4x^5 + tany\right) = \frac{d}{dx}\left(y^2 + 5x\right)$$

$$\frac{d}{dx}(4x^5) + \frac{d}{dx}(tany) = \frac{d}{dx}(y^2) + \frac{d}{dx}(5x)$$

$$20x^{4} + sec^{2}y \frac{dy}{dx} = 2y \frac{dy}{dx} + 5$$

$$\left(\text{neig} - 2y \right) \frac{dy}{dx} = 5 - 20 \times 4$$

F. x.

 $x^{3}y + xy^{3} = -8$.

Find dy?

Solved in Jans.

Find the agrandian of the tangent line to the curve
$$x^{2}+y^{2} = \left(2x^{2}+2y^{2}-x\right)^{2}$$
at the point $(0, \frac{1}{2})$

$$\frac{d}{dx}\left(x^{2}+y^{2}\right) = \frac{d}{dx}\left[\left(2x^{2}+2y^{2}-x\right)^{2}\right]$$

$$2x + 2y\frac{dy}{dx} = 2\left(2x^{2}+2y^{2}-x\right)\cdot\frac{d}{dx}\left(2x^{2}+2y^{2}-x\right)$$

$$2x + 2y\frac{dy}{dx} = 2\cdot\left(2x^{2}+2y^{2}-x\right)\cdot\frac{d}{dx}\left(2x^{2}+2y^{2}-x\right)$$

$$2x + 2y\frac{dy}{dx$$

New Section 4 Page 5

Pant
$$(0, \frac{1}{2})$$
. $y = x + \frac{1}{2}$

Find the second derivative emplicitly.

$$x^2 + y^2 = 25$$
.

We saw that
$$\frac{dy}{dx} = -\frac{x}{y}$$

Find
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(-\frac{x}{y} \right)$$

$$=$$
 $\frac{y}{dx} \cdot x$

$$= \frac{3 - \left(-\frac{x}{3}\right) \cdot x}{3}$$

$$-\frac{y+\frac{x^2}{y}}{y^2}=-$$

$$\frac{d^2y}{dx^2} = -\frac{y^2 + x^2}{y} \cdot \frac{1}{y^2} = -\frac{y^2 + x^2}{y^3}$$