Thursday, Occober 12, 2017 MM
Obj 3: Composition of functions.
The composition of the function
$$f$$
 with the
function g is a function, denoted by $f \circ g$
(nead as f circle g on $f \circ f g$)
($f \circ g$)(x) = $f(g(x))$
Note: $f(g(x))$ does MOT mean (fg)(x)
 $x \longrightarrow g \longrightarrow g(x) \longrightarrow f$
 $f(g(x)) = 4x - 3$. $g(x) = 5x^2 - 2$.
(a) Find ($f \circ g$)(x)

Thursday, October 12, 2017

$$(f \circ g)(x) = f(g(x))$$

$$= f(5x^{2} - 2)$$

$$= 4(5x^{2} - 2) - 3$$

$$= 20x^{2} - 8 - 3$$

$$(f \circ g)(x) = 20x^{2} - 11$$
(b) Evaluate $(f \circ g)(2) = 20 \cdot 4 - 11 = 69$
(c) Find $(g \circ f)(x)$

$$(g \circ f)(x) = g(f(x)) = g(4x - 3)$$

$$= 5(4x - 3)^{2} - 2$$

$$= 5 \cdot (16x^{2} - 24x + 9) - 2$$

$$= 80x^{2} - 120x + 45 - 2$$

$$(g \circ f)(x) = 80x^{2} - 120x + 43$$

.

Thursday, October 12, 2017 10:39 AM

•

Trober 12, 2017 10:40 AM In general, $(f \circ g)(x) \neq (g \circ f)(x)$ Thursday, October 12, 2017 10:40 AM Note:

E.x.
(a)
$$f(x) = 2x + 1$$
. $g(x) = 2x^{2} - x - 1$.
Find $(f \circ g)(x)$ and $(g \circ f)(x)$
(b) $f(x) = \frac{4}{x + 2}$ and $g(x) = \frac{4}{x}$.
Find $(f \circ g)(x)$ and $(g \circ f)(x)$
(a) $(f \circ g)(x) = f(g(x)) = f(2x^{2} - x - 1)$
 $= 2(2x^{2} - x - 1) + 1$
 $= 4x^{2} - 2x - 2 + 1$
 $(f \circ g)(x) = 4x^{2} - 2x - 1$
 $(g \circ f)(x) = g(f(x)) = g(2x + 1)$
 $= 2(2x + 1)^{2} - (2x + 1) - 1$
 $= 2(4x^{2} + 4x + 1) - 2x - 1 - 1$
 $(g \circ f)(x) = 8x^{2} + 8x + 2 - 2x - 2 = 8x^{2} + 6x$

Thursday, October 12, 2017 10:57 AM
(b)
$$(f \circ g)(x) = f(g(x)) = \frac{4}{\frac{1}{x} + 2} = \frac{4}{\frac{1}{x} + \frac{2x}{x}}$$

 $= \frac{4}{\frac{4}{x} + 2x} = \frac{4}{\frac{1}{x} + 2x} = \frac{4x}{\frac{1}{x} + 2x}$
 $= \frac{4}{\frac{1}{x} + 2x} = \frac{4}{\frac{1}{x} + 2x} = \frac{4x}{\frac{1}{x} + 2x}$
 $(g \circ f)(x) = g(f(x)) = \frac{1}{\frac{4}{x} + 2} = \frac{x+2}{4}$

Obj 4: Find the domain of Composite Functions.
E.g.
$$f(x) = \frac{4}{x+2}$$
; $g(x) = \frac{1}{x}$.
We saw that $(f \circ g)(x) = f(g(x)) = \frac{4x}{1+2x}$.
(1) Find Domain of $g(x)$. $x \neq 0$.
(2) Find Domain of $(f \circ g)(x)$. $(f \circ g)(x) = \frac{4x}{1+2x}$.
 $1+2x = 0 \rightarrow x = -\frac{1}{2}$. Domain : $x \neq -\frac{1}{2}$.

Domain of fog:

$$\frac{1}{2} = 0$$

$$(-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, 0) \cup (0, \infty)$$
To find domain of the composite function fog:
(1) Find domain of g. (3) Find domain of

$$f(g(x))$$
(2) Form $(fog)(x)$. (4) Take the intersection
of domain in (1) and (3)

Thursday, October 12, 2017 11:05 AM E.g. $f(x) = \frac{2}{x+3}$, $g(x) = \frac{1}{x-1}$. * Find domain of $f \circ g$. (1) Domain of $g(x) : x \neq 1$. (2) Find $(f \circ g)(x) = f(g(x)) = f(\frac{1}{x-1})$

 $= \frac{2}{\frac{1}{x-1} + 3} = \frac{2}{\frac{1}{x-1} + \frac{3(x-1)}{x-1}}$ $(f \circ g)(x) = \frac{2}{\frac{3x-2}{x-1}} = \frac{2(x-1)}{3x-2}$ (3) Do main of $f(g(x)) \stackrel{\times}{:} x \neq \frac{2}{3}$.
(4) Domain of $f \circ g : (-\infty, \frac{2}{3}) \cup (\frac{2}{3}, 1) \cup (1, \infty)$ $Db_{3} \stackrel{\times}{:} De compose Functions.$

Thursday, October 12, 2017 11:14 AM

 $\frac{\text{L.g.}}{9} h(x) = \sqrt{x^2 + 5}$ Find functions f(x) and g(x) (none which is the identity function) such that $(f \circ g)(x) = h(x)$ $f(x) = \sqrt{x}$; $g(x) = x^{2}+5$ $(f \circ g)(x) = \sqrt{x^2 + 5} = h(x)/$ $f(x) = \sqrt{x+5}$, $g(x) = x^2$ $(f \circ g)(x) = \sqrt{x^2 + 5} = h(x)$ E_{q} . $h(x) = (3x - 1)^{3}$. Find f and g st. $(f \circ g(x) = h(x)$ $f(x) = x^5$; g(x) = 3x - 1