1

Trigonometric Functions

ALWAYS LEARNING

1.2 Angle Relationships and Similar Triangles

Geometric Properties - Triangles

ALWAYS LEARNING

Vertical Angles

Vertical angles have equal measures.

The pair of angles *NMP* and *RMQ* are vertical angles.

ALWAYS LEARNING

Parallel Lines

Parallel lines are lines that lie in the same plane and do not intersect.

When a line *q* intersects two parallel lines, *q* is called a **transversal.**

Angles and Relationships

Name	Sketch	Rule
Alternate interior angles	q 5 4 n (also 3 and 6)	Angle measures are equal.
Alternate exterior angles	$\begin{array}{c} 1 \\ \hline \\ m \\ \hline \\ 8 \\ (also 2 and 7) \end{array}$	Angle measures are equal.

Angles and Relationships

Name	Sketch	Rule
Interior angles on same side of transversal	q 6 4 $n(also 3 and 5)$	Angle measures add to 180°.
Corresponding angles	<i>q</i> <i>2</i> <i>m</i> <i>6</i> <i>n</i> (also 1 and 5, 3 and 7, 4 and 8)	Angle measures are equal.

Example 1 FINDING ANGLE MEASURES

Find the measures of angles 1, 2, 3, and 4, given that lines *m* and *n* are parallel.

Angles 1 and 4 are alternate exterior angles, so they are equal.

$$3x+2=5x-40$$

21 = x

Subtract 3*x.* Add 40.

Divide by 2.

Angle 1 has measure

$$3x + 2 = 3(21) + 2 = 65^{\circ}$$

Substitute 21 for *x*.

Example 1 FINDING ANGLE MEASURES (continued)

Angle 4 has measure

$$5x - 40 = 5(21) - 40 = 65^{\circ}$$

Angle 2 is the supplement of a 65° angle, so it has measure $180^{\circ} - 65^{\circ} = 115^{\circ}$.

Angle 3 is a vertical angle to angle 1, so its measure is 65°.

Angle Sum of a Triangle

The sum of the measures of the angles of any triangle is 180°.

APPLYING THE ANGLE SUM OF A TRIANGLE PROPERTY

The measures of two of the angles of a triangle are 48° and 61°. Find the measure of the third angle, *x*.

The third angle of the triangle measures 71°.

Types of Triangles: Angles

Types of Triangles: Sides

Conditions for Similar Triangles

For triangle *ABC* to be similar to triangle *DEF*, the following conditions must hold.

1. Corresponding angles must have the same measure.

2. Corresponding sides must be proportional. (That is, the ratios of their corresponding sides must be equal.)

FINDING ANGLE MEASURES IN SIMILAR TRIANGLES

In the figure, triangles *ABC* and *NMP* are similar. Find the measures of angles *B* and *C*.

Since the triangles are similar, corresponding angles have the same measure.

C corresponds to P, so angle C measures 104°.

B corresponds to M, so angle B measures 31°.

FINDING SIDE LENGTHS IN SIMILAR TRIANGLES

Given that triangle *ABC* and triangle *DFE* are similar, find the lengths of the unknown sides of triangle *DFE*.

Similar triangles have corresponding sides in proportion.

DF corresponds to AB, and DE corresponds to AC, so

$$\frac{DE}{AC} = \frac{DF}{AB} \Longrightarrow \frac{8}{16} = \frac{DF}{24}$$

FINDING SIDE LENGTHS IN SIMILAR TRIANGLES (continued)

$$\frac{8}{16} = \frac{DF}{24} \Longrightarrow 8 \cdot 24 = 16 \cdot DF \Longrightarrow 192 = 16 \cdot DF \Longrightarrow 12 = DF$$

Side *DF* has length 12.

EF corresponds to CB, so

$$\frac{DE}{AC} = \frac{EF}{CB} \Longrightarrow \frac{8}{16} = \frac{EF}{32}$$
$$\implies 8 \cdot 32 = 16 \cdot EF \Longrightarrow 16 = EF$$

Side EF has length 16.

Example 5 FINDING THE HEIGHT OF A FLAGPOLE

Workers must measure the height of a building flagpole. They find that at the instant when the shadow of the station is 18 m long, the shadow of the flagpole is 27 m long. The building is 10 m high. Find the height of the flagpole.

The two triangles are similar, so corresponding sides are in proportion.

MN	_	27
10	_	18

FINDING THE HEIGHT OF A FLAGPOLE (continued)

$$\frac{MN}{10} = \frac{3}{2}$$

Lowest terms

$$MN \cdot 2 = 10 \cdot 3$$

MN = 15

The flagpole is 15 m high.

ALWAYS LEARNING