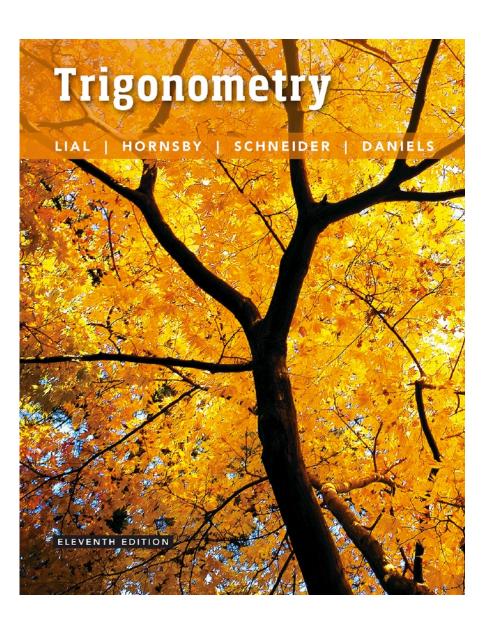
2

Acute Angles and Right Triangles



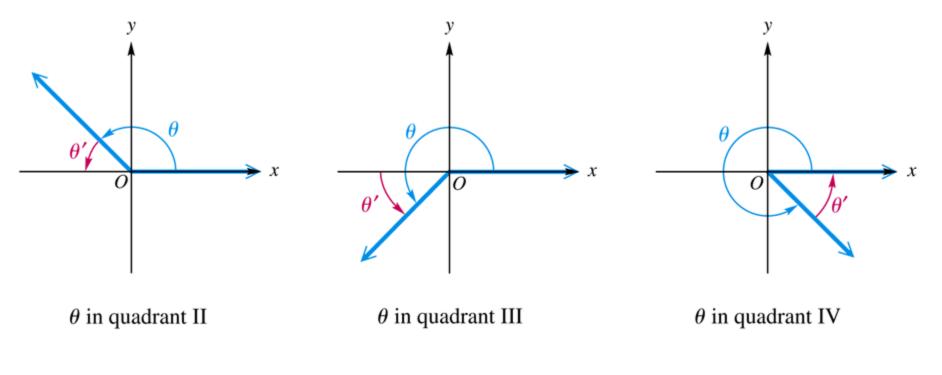
ALWAYS LEARNING

2.2 Trigonometric Functions of Non-Acute Angles

Reference Angles - Special Angles as Reference Angles - Determination of Angle Measures with Special Reference Angles

Reference Angles

A **reference angle** for an angle θ is the positive acute angle made by the terminal side of angle θ and the *x*-axis.



Caution

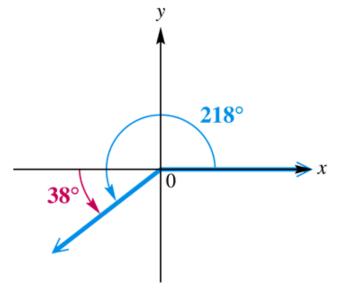
A common error is to find the reference angle by using the terminal side of θ and the *y*-axis.

The reference angle is always found with reference to the x-axis.

Example 1(a) FINDING REFERENCE ANGLES

Find the reference angle for an angle of 218°.

The positive acute angle made by the terminal side of this angle and the *x*-axis is $218^{\circ} - 180^{\circ} = 38^{\circ}$.



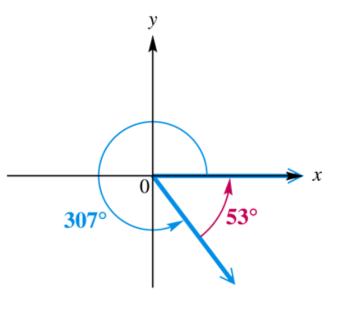
For $\theta = 218^{\circ}$, the reference angle $\theta' = 38^{\circ}$.

Example 1(b) FINDING REFERENCE ANGLES

Find the reference angle for an angle of 1387°.

First find a coterminal angle between 0° and 360°.

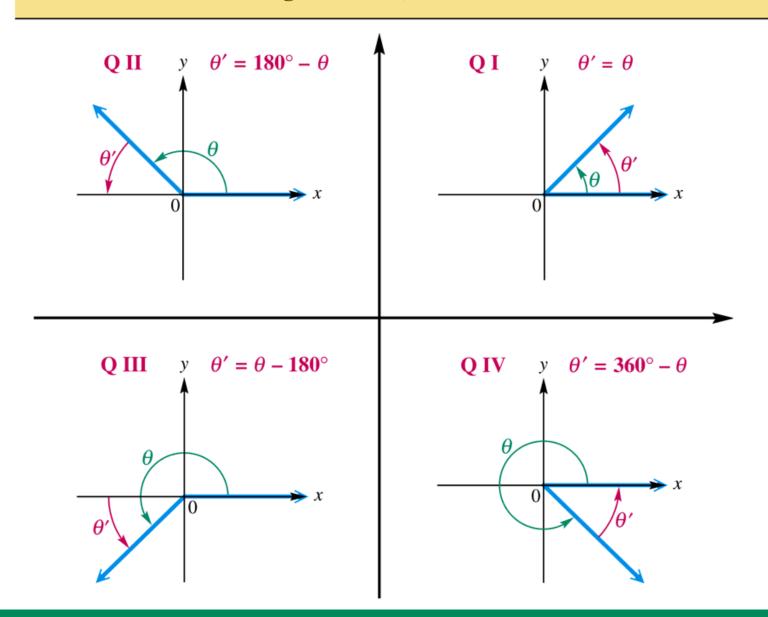
Divide 1387° by 360 to get a quotient of about 3.9. Begin by subtracting 360° three times. $1387^{\circ} - 3(360^{\circ}) = 307^{\circ}$.



 $360^{\circ} - 307^{\circ} = 53^{\circ}$

The reference angle for 307° (and thus for 1387°) is $360^{\circ} - 307^{\circ} = 53^{\circ}$.

Reference Angle θ' for θ , where $0^{\circ} < \theta < 360^{\circ}$

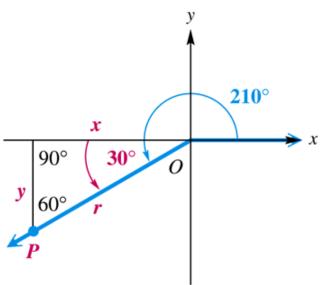


Find the values of the six trigonometric functions for 210°.

The reference angle for a 210° angle is $210^{\circ} - 180^{\circ} = 30^{\circ}$.

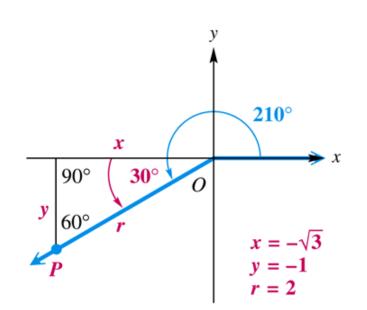
Choose point P on the terminal side of the angle so the distance from the origin to P is 2.

$$r = 2, x = -\sqrt{3}, y = -1$$



FINDING TRIGONOMETRIC FUNCTION VALUES OF A QUADRANT III ANGLE (continued)

$$\sin 210^{\circ} = -\frac{1}{2}$$
$$\cos 210^{\circ} = -\frac{\sqrt{3}}{2}$$
$$\tan 210^{\circ} = \frac{-1}{-\sqrt{3}} = \frac{\sqrt{3}}{3}$$
$$\cot 210^{\circ} = \sqrt{3}$$
$$\sec 210^{\circ} = \frac{2}{-\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$
$$\csc 210^{\circ} = -2$$



Finding Trigonometric Function Values For Any Nonquadrantal Angle θ

- Step 1 If θ > 360°, or if θ < 0°, find a coterminal angle by adding or subtracting 360° as many times as needed to get an angle greater than 0° but less than 360°.
- Step 2 Find the reference angle θ' .
- Step 3 Find the trigonometric function values for reference angle θ' .

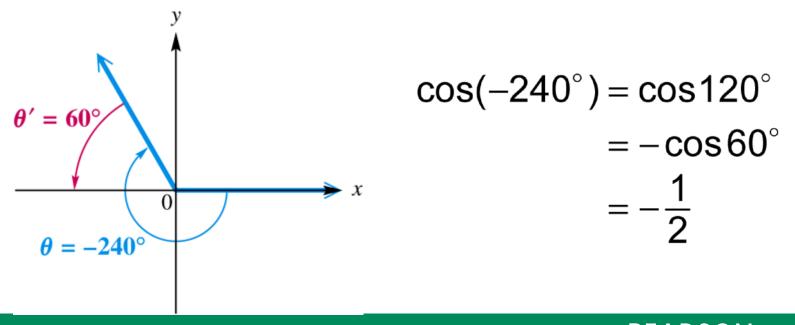
Finding Trigonometric Function Values For Any Nonquadrantal Angle θ (continued)

Step 4 Determine the correct signs for the values found in Step 3. This gives the values of the trigonometric functions for angle θ .

Example 3(a) FINDING TRIGONOMETRIC FUNCTION VALUES USING REFERENCE ANGLES

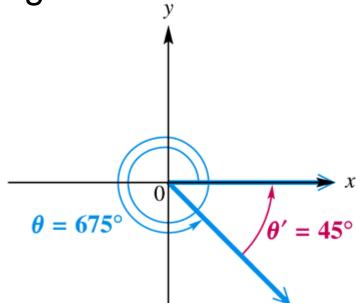
Find the exact value of $\cos(-240^\circ)$.

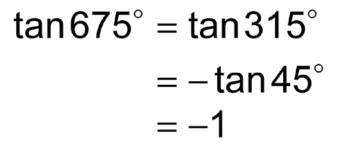
Since an angle of -240° is coterminal with an angle of $-240^{\circ} + 360^{\circ} = 120^{\circ}$, the reference angle is $180^{\circ} - 120^{\circ} = 60^{\circ}$.



Example 3(b) FINDING TRIGONOMETRIC FUNCTION VALUES USING REFERENCE ANGLES

Find the exact value of tan 675°. Subtract 360° to find a coterminal angle between 0° and 360°: $675^{\circ} - 360^{\circ} = 315^{\circ}$. The reference angle is $360^{\circ} - 315^{\circ} = 45^{\circ}$. An angle of 315° is in quadrant IV, so the tangent will be negative.





USING FUNCTION VALUES OF SPECIAL ANGLES

Evaluate
$$\cos 120^\circ + 2\sin^2 60^\circ - \tan^2 30^\circ$$
.

$$\cos 120^{\circ} = -\frac{1}{2} \qquad \sin 60^{\circ} = \frac{\sqrt{3}}{2} \qquad \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$
$$\cos 120^{\circ} + 2\sin^2 60^{\circ} - \tan^2 30^{\circ} = -\frac{1}{2} + 2\left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{\sqrt{3}}{3}\right)^2$$
$$= -\frac{1}{2} + 2\left(\frac{3}{4}\right) - \frac{3}{9}$$
$$= \frac{2}{3}$$

ALWAYS LEARNING

Example 5(a) USING COTERMINAL ANGLES TO FIND FUNCTION VALUES

Evaluate cos 780° by first expressing the function in terms of an angle between 0° and 360°.

$$\cos 780^{\circ} = \cos (780^{\circ} - 2 \cdot 360^{\circ})$$
$$= \cos 60^{\circ}$$
$$= \frac{1}{2}$$

Example 5(b) USING COTERMINAL ANGLES TO FIND FUNCTION VALUES

Evaluate cot(-405°) by first expressing the function in terms of an angle between 0° and 360°.

 $\cot(-405^{\circ}) = \cot(-405^{\circ} + 2 \cdot 360^{\circ}) = \cot 315^{\circ}.$

The angle 315° is located in quadrant IV, and its reference angle is 45°.

FINDING ANGLE MEASURES GIVEN AN INTERVAL AND A FUNCTION VALUE

Find all values of θ , if θ is in the interval [0°, 360°) and $\cos\theta = -\frac{\sqrt{2}}{2}.$ Since $\cos \theta$ is negative, θ must lie in quadrant II or III. The absolute value of $\cos \theta$ is $\frac{\sqrt{2}}{2}$, so the reference angle is 45°. The angle in quadrant II is The angle in quadrant III is $180^{\circ} - 45^{\circ} = 135^{\circ}$. $180^{\circ} + 45^{\circ} = 225^{\circ}$. θ in quadrant II $\theta = 225^{\circ}$ $\theta = 135^{\circ}$ $\theta' = 45$ X $\theta' = 45^{\circ}$ θ in quadrant III