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Difference Identity for Cosine

Point Q is on the unit 
circle, so the coordinates 
of Q are (cos B, sin B).

The coordinates of S are 
(cos A, sin A).

The coordinates of R are (cos(A – B), sin (A – B)).
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Difference Identity for Cosine

Since the central angles 
SOQ and POR are 
equal, PR = SQ.

Using the distance formula, 
since PR = SQ,
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Difference Identity for Cosine

Square each side and clear parentheses:

Subtract 2 and divide by –2:
cos( ) cos cos sin sinA B A B A B− = +
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Sum Identity for Cosine

To find a similar expression for cos(A + B) rewrite 
A + B as A – (–B) and use the identity for 
cos(A – B).

Cosine difference identity

Negative-angle identities
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Cosine of a Sum or Difference
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Example 1(a) FINDING EXACT COSINE FUNCTION 
VALUES 

Find the exact value of cos 15°.

( )= −  cos15 cos 45 30

= +   cos45 cos30 sin45 cos30

= ⋅ + ⋅
2 3 2 1

2 2 2 2

+
=

6 2
2
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Example 1(b) FINDING EXACT COSINE FUNCTION 
VALUES 

Find the exact value of



Copyright © 2017, 2013, 2009 Pearson Education, Inc. 10

Example 1(c) FINDING EXACT COSINE FUNCTION 
VALUES 

Find the exact value of cos 87°cos 93° – sin 87°sin 93°.
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Cofunction Identities

The same identities can be obtained for 
a real number domain by replacing 90°
with 
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Example 2 USING COFUNCTION IDENTITIES TO 
FIND θ

Find one value of θ or x that satisfies each of the 
following.
(a) cot θ = tan 25°

(b) sin θ = cos (–30°)
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Example 2 USING COFUNCTION IDENTITIES TO 
FIND θ (continued)

(c)

Find one value of θ or x that satisfies the following.

3csc
4

sec xπ
=

3csc sec
4

xπ
=

3csc
4

csc
2

xππ  − 
 

=

3
4 2

xπ π
= −

4
x π
= −
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Note

Because trigonometric (circular) 
functions are periodic, the solutions in 
Example 2 are not unique. We give 
only one of infinitely many possibilities.
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Applying the Sum and Difference 
Identities

If either angle A or B in the identities for 
cos(A + B) and cos(A – B) is a quadrantal angle, 
then the identity allows us to write the expression 
in terms of a single function of A or B.
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Example 3 REDUCING cos (A – B) TO A FUNCTION 
OF A SINGLE VARIABLE

Write cos(180° – θ) as a trigonometric function of θ
alone.

θ θ θ− = + cos180 sinc 1os(180 ) c 80os sin

θ θ= − +( 1)cos (0)sin
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Example 4 FINDING cos (s + t) GIVEN 
INFORMATION ABOUT s AND t

Suppose that                                   and both s and t
are in quadrant II. Find cos(s + t). 

Sketch an angle s in quadrant II 
such that                  Since 

let  y = 3 and r = 5.

The Pythagorean theorem gives 

Since s is in quadrant II, x = –4 and 

Method 1
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Example 4 FINDING cos (s + t) GIVEN 
INFORMATION ABOUT s AND t (cont.)

Sketch an angle t in quadrant II 
such that                      Since 

let  x = –12 and 
r = 13.

The Pythagorean theorem gives 

Since t is in quadrant II, y = 5 and 

12cos ,
13

xt
r

= − =
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Example 4 FINDING cos (s + t) GIVEN 
INFORMATION ABOUT s AND t (cont.)
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Example 4 FINDING cos (s + t) GIVEN 
INFORMATION ABOUT s AND t (cont.)

Method 2
We use Pythagorean identities here. To find cos s, 
recall that sin2s + cos2s = 1, where s is in quadrant II.

2
23 cos 1

5
s  + =  

29 cos 1
25

s+ =

2 16cos
25

s =

4cos
5

s = −

sin s = 3/5

Square.

Subtract 9/25

cos s < 0 because s
is in quadrant II.
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Example 4 FINDING cos (s + t) GIVEN 
INFORMATION ABOUT s AND t (cont.)

To find sin t, we use sin2t + cos2t = 1, where t is in 
quadrant II. 2

2 12sin 1
13

t  + − =  
2 144sin 1

169
t + =

2 25sin
169

t =

5sin
13

t =

cos t = –12/13

Square.

Subtract 144/169

sin t > 0 because t is 
in quadrant II.

From this point, the problem is solved using 
(see Method 1).  
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Example 5 APPLYING THE COSINE DIFFERENCE 
IDENTITY TO VOLTAGE

Common household electric current is called 
alternating current because the current alternates 
direction within the wires. The voltage V in a typical 
115-volt outlet can be expressed by the function

where ω is the angular speed (in radians per second) 
of the rotating generator at the electrical plant, and t
is time measured in seconds. (Source: Bell, D., 
Fundamentals of Electric Circuits, Fourth Edition, 
Prentice-Hall, 1988.)
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Example 5 APPLYING THE COSINE DIFFERENCE 
IDENTITY TO VOLTAGE (continued)

(a) It is essential for electric generators to rotate at 
precisely 60 cycles per sec so household 
appliances and computers will function properly. 
Determine ω for these electric generators.

Each cycle is 2π radians at 60 cycles per sec, so the 
angular speed is ω = 60(2π) = 120π radians per sec.
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Example 5 APPLYING THE COSINE DIFFERENCE 
IDENTITY TO VOLTAGE (continued)

(b) Graph V in the window [0, 0.05] by [–200, 200].
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Example 5 APPLYING THE COSINE DIFFERENCE 
IDENTITY TO VOLTAGE (continued)

(c) Determine a value of     so that the graph of 
is the same as the graph of  

Using the negative-angle identity for cosine and a 
cofunction identity gives

Therefore, if 



Copyright © 2013, 2009, 2005 Pearson Education, Inc. 26

Example 6 VERIFYING AN IDENTITY

Verify that the following equation is an identity.
3sec csc
2

x xπ − = −  
Work with the more complicated left side.

3 1sec
32 cos
2

x
x

π
π

 − =    −  

1
3 3cos cos sin sin
2 2

x xπ π=
+
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Example 6 VERIFYING AN IDENTITY (continued)

The left side is identical to the right side, so the given 
equation is an identity. 

1 1
3 3 0 cos ( 1)sincos cos sin sin
2 2

x xx xπ π =
+ −+ 

1
sin x

=
−

csc x= −
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