5

Trigonometric Identities

ALWAYS LEARNING

5.4 Sum and Difference Identities for Sine and Tangent

Sum and Difference Identities for Sine • Sum and Difference
Identities for Tangent • Applying the Sum and Difference Identities
Verifying an Identity

Sum and Difference Identities for Sine

We can use the cosine sum and difference identities to derive similar identities for sine and tangent.

$$\sin(A + B) = \cos\left[90^{\circ} - (A + B)\right] \quad \text{Cofunction identity}$$
$$= \cos\left[(90^{\circ} - A) - B\right]$$

 $= \cos(90^{\circ} - A)\cos B + \sin(90^{\circ} - A)\sin B$

Cosine difference identity

Cofunction identities

Sum and Difference Identities for Sine

sin(A - B) = sin[A + (-B)]= sin A cos(-B) + cos A sin(-B) Sine sum identity = sin A cos B - cos A sin B Negative-angle identities

Sine of a Sum or Difference

sin(A+B) = sin A cos B + cos A sin Bsin(A-B) = sin A cos B - cos A sin B

Sum and Difference Identities for Tangent

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$
Fundamental identity
$$= \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$
Sum identities
$$= \frac{\frac{\sin A \cos B + \cos A \sin B}{1}}{\frac{1}{\cos A \cos B - \sin A \sin B}} \cdot \frac{1}{\frac{\cos A \cos B}{1}}$$

Multiply numerator and denominator by 1.

Sum and Difference Identities for Tangent

Replace *B* with -B and use the fact that tan(-B) = -tan B to obtain the identity for the tangent of the difference of two angles.

ALWAYS LEARNING

Tangent of a Sum or Difference

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

ALWAYS LEARNING

Example 1(a) FINDING EXACT SINE AND TANGENT FUNCTION VALUES

Find the *exact* value of sin 75° .

$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$

 $= sin 45^{\circ} cos 30^{\circ} + cos 45^{\circ} sin 30^{\circ}$

$$=\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2}\cdot\frac{1}{2}$$
$$=\frac{\sqrt{6}+\sqrt{2}}{4}$$

ALWAYS LEARNING

Example 1(b) FINDING EXACT SINE AND TANGENT FUNCTION VALUES

Find the exact value of
$$\tan \frac{7\pi}{12}$$
.
 $\tan \frac{7\pi}{12} = \tan \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \frac{\tan \frac{\pi}{3} + \tan \frac{\pi}{4}}{1 - \tan \frac{\pi}{3} \tan \frac{\pi}{4}}$

$$= \frac{\sqrt{3} + 1}{1 - \sqrt{3} \cdot 1}$$

$$= \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}}$$

$$= \frac{\sqrt{3} + 3 + 1 + \sqrt{3}}{1 - 3} = \frac{4 + 2\sqrt{3}}{-2}$$

$$= -2 - \sqrt{3}$$

ALWAYS LEARNING

Example 1(c) FINDING EXACT SINE AND TANGENT FUNCTION VALUES

Find the *exact* value of $sin 40^{\circ} cos 160^{\circ} - cos 40^{\circ} sin 160^{\circ}$.

 $\sin 40^{\circ} \cos 160^{\circ} - \cos 40^{\circ} \sin 160^{\circ} = \sin(40^{\circ} - 160^{\circ})$ $= \sin(-120^{\circ})$ $= -\sin 120^{\circ}$ $= -\frac{\sqrt{3}}{2}$

11

Example 2

WRITING FUNCTIONS AS EXPRESSIONS INVOLVING FUNCTIONS OF θ

Write each function as an expression involving functions of θ .

= sin θ

$$(a) = \cos(30^{\circ} + \theta) = \cos 30^{\circ} \cos \theta - \sin 30^{\circ} \sin \theta$$
$$= \frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta = \frac{\sqrt{3} \cos \theta - \sin \theta}{2}$$
$$(b) \tan(45^{\circ} - \theta) = \frac{\tan 45^{\circ} - \tan \theta}{1 + \tan 45^{\circ} \tan \theta} = \frac{1 - \tan \theta}{1 + \tan \theta}$$
$$(c) \sin(180^{\circ} - \theta) = \sin 180^{\circ} \cos \theta - \cos 180^{\circ} \sin \theta$$
$$= 0 \cdot \cos \theta - (-1) \sin \theta$$

Example 3

FINDING FUNCTION VALUES AND THE QUADRANT OF A + B

Suppose that *A* and *B* are angles in standard position with $\sin A = \frac{4}{5}, \frac{\pi}{2} < A < \pi$, and $\cos B = -\frac{5}{13}, \pi < B < \frac{3\pi}{2}$. Find each of the following.

- (a) sin(A+B)
- (b) tan(A+B)
- (c) the quadrant of A + B

The identity for sin(A + B) involves sin A, cos A, sin B, and cos B. The identity for tan(A + B) requires tan Aand tan B. We must find cos A, tan A, sin B and tan B.

Because A is in quadrant II, cos A is negative and tan A is negative.

$$\sin^2 A + \cos^2 A = 1$$
$$\left(\frac{4}{5}\right)^2 + \cos^2 A = 1$$
$$\cos^2 A = \frac{9}{25} \Rightarrow \cos A = -\frac{3}{5}$$

Because *B* is in quadrant III, sin *B* is negative and tan *B* is positive.

$$\sin^{2} B + \cos^{2} B = 1$$

$$\sin^{2} B + \left(-\frac{5}{13}\right)^{2} = 1$$

$$\sin^{2} B = \frac{144}{169} \implies \sin B = -\frac{12}{13}$$

$$\tan A = \frac{\sin A}{\cos A} = \frac{\frac{4}{5}}{-\frac{3}{5}} = -\frac{4}{3} \qquad \tan B = \frac{\sin B}{\cos B} = \frac{-\frac{12}{13}}{-\frac{5}{13}} = \frac{12}{5}$$

15

(a)
$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

= $\frac{4}{5} \left(-\frac{5}{13}\right) + \left(-\frac{3}{5}\right) \left(-\frac{12}{13}\right)$

$$=-\frac{20}{65}+\frac{36}{65}=\frac{16}{65}$$

(b)
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

= $\frac{-\frac{4}{3} + \frac{12}{5}}{1 - (-\frac{4}{3})(\frac{12}{5})} = \frac{\frac{16}{15}}{\frac{63}{15}} = \frac{16}{63}$

(c) From parts (a) and (b), sin (A + B) > 0 and tan (A + B) > 0.

The only quadrant in which the values of both the sine and the tangent are positive is quadrant I, so (A + B) is in quadrant I.

VERIFYING AN IDENTITY USING SUM AND DIFFERENCE IDENTITIES

Verify that the equation is an identity.

$$\sin\left(\frac{\pi}{6} + \theta\right) + \cos\left(\frac{\pi}{3} + \theta\right) = \cos\theta$$
$$\sin\left(\frac{\pi}{6} + \theta\right) + \cos\left(\frac{\pi}{3} + \theta\right)$$
$$= \left(\sin\frac{\pi}{6}\cos\theta + \sin\theta\cos\frac{\pi}{6}\right) + \left(\cos\frac{\pi}{3}\cos\theta - \sin\frac{\pi}{3}\sin\theta\right)$$
$$= \left(\frac{1}{2}\cos\theta + \frac{\sqrt{3}}{2}\sin\theta\right) + \left(\frac{1}{2}\cos\theta - \frac{\sqrt{3}}{2}\sin\theta\right)$$
$$= \frac{1}{2}\cos\theta + \frac{1}{2}\cos\theta = \cos\theta$$