5.5. Double Angle Identities and Product - to-Sum Friday, November 3, 2017 8:04 PM & Identities and Sum - to-Product Identities.

Last time:

cos
$$(A+B) = cosA \cdot cosB - sinA \cdot sinB$$

 $cos(A-B) = cosA \cdot cosB + sinA \cdot sinB$
 $sin(A+B) = sinA \cdot cosB + cosA sinB$
 $sin(A-B) = sinA \cdot cosB - cosA sinB$.
 $tan(A+B) = \frac{tanA + tanB}{1 - tanA tanB}$
 $tan(A-B) = \frac{tanA - tanB}{1 + tanA tanB}$

Obj 1: Double Angle Identities.

$$con(2A) = con(A + A) = conA \cdot conA - ninA \cdot ninA$$

$$= conA - nin^2A$$

$$con(2A) = con^2A - nin^2A$$

Wednesday, November 8, 2017 9:23 AM
$$= (1 - \sin^2 A) - \sin^2 A$$

$$= 1 - \sin^2 A - \sin^2 A$$

$$= 1 - 2\sin^2 A$$

$$\cos(2A) = 1 - 2\sin^2 A$$

$$= \cos^2 A - \sin^2 A$$

$$= \cos^2 A - \sin^2 A$$

$$= \cos^2 A - 1 + \cos^2 A$$

$$\cos(2A) = 2\cos^2 A - 1$$

$$sin(2A) = sin(A+A) = sinAcosA + cosAsinA$$

= $sinAcosA + sinAcosA$

$$+an(2A) = +an(A+A) = \frac{tan A + tan A}{1 - tan A + tan A}$$

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

All the Double-Angle Identities:

$$con(2A) = con^2A - sin^2A$$
; $con(2A) = 2 con^2A - 1$

$$\cos(2A) = 1 - 2\sin^2 A$$

$$tan(2A) = \frac{2 tan A}{1 - tan^2 A}$$

$$E.x.1.$$
 Given that $cos\theta = \frac{3}{5}$ and $sin\theta < 0$

Q: Find
$$con(20)$$
, $sin(20)$ and $ton(20)$

$$\cos(2\theta) = 2\cos^2\theta - 1$$

$$= 2\cdot\left(\frac{9}{25}\right) - 1 = \frac{18}{25} - 1 = -\frac{7}{25}$$

$$S_0, (2\theta) = -\frac{7}{25}$$

Find
$$\sin \theta$$
. $\sin^2 \theta + \cos^2 \theta = 1$

$$\sin^2\theta + \frac{9}{25} = 1$$

$$\sin^2\Theta = 1 - \frac{9}{25} = \frac{16}{25}$$

Since $\sin \theta < 0$, we must have $\sin \theta = -\frac{4}{\pi}$.

$$\sin(2\theta) = 2\sin\theta \cdot \cos\theta = 2\cdot\left(-\frac{4}{5}\right)\cdot\left(\frac{3}{5}\right)$$

$$sin(26) = -\frac{24}{25}$$

$$\tan(2\theta) = \frac{\sin(2\theta)}{\cos(2\theta)} = \frac{-\frac{24}{25}}{-\frac{7}{25}} = \frac{24}{25} \cdot \frac{25}{7} = \frac{24}{7}.$$