3.1 Radian Measure Monday, October 2, 2017 9:05 AM

Obj 1: Define Radian Measure and convert between Radian Measure and the Degree Measure.

360° angle et 2TT nadians 180° To radians 60° angle $\longrightarrow \frac{\pi}{3}$ radians 61° angle $61 \cdot \frac{\pi}{180} = \frac{61\pi}{180}$

= 0.3388π

1) To convert from a degree measure to a radian measure, we multiply the degree measure by $\frac{\pi}{1.80}$.

E.g. * Convert 45° to radian measure.

$$45^6 = \left(45 \cdot \frac{\pi}{180}\right)$$
 radian

 $= \frac{45\pi}{180} = \frac{\pi}{4} \text{ nadian}$

* Convert 9° to radian measure

$$9^{\circ} = \left(9 \cdot \frac{\pi}{180}\right) \times adian$$

$$=$$
 $\left(\frac{9\pi}{180}\right)$ radian $=\frac{\pi}{20}$ radian

* Convert - 270° to radian measure.

$$-270.\frac{\pi}{180} = -\frac{270\pi}{180} = -\frac{3\pi}{2}$$
 radian.

(2) To convert from a radian measure to a degree measure, we multiply the radian measure loy (180).

E.g., Convert 5T radian to degrees

 $\frac{5\pi}{6}$ radian = $\left(\frac{5\pi}{6} \cdot \frac{180}{\pi}\right)^{8}$

= 150°

- convert to degrees: 6 radian —

 $6 \text{ radian} = 6 \cdot 180 = 1080$

~ 343.775°

Monday, Octob	Padian	sm ox	losa	tand	
O°	0	0	1	0	
30°	<u>π</u>	1 2	2	1 13	
45°	#4	1/2	1/2	1	
60°	<u>π</u> 3	73 2	1 2	V3	
90°					
1200					
1500					
360					
360	0				

Monday, October 2, 2017 10:07 AN

Obj2: Find trig function valuer of angles given in radian measure.

$$\frac{\text{E.g.}}{3} + \tan\left(\frac{2\pi}{3}\right) = ?$$

1 nt step: convert to degree: $\frac{2h}{3}$. $\frac{180}{R} = 120^{\circ}$.

$$E.g. \quad \cos\left(-\frac{4\pi}{3}\right) = ?$$

1 step: convert to degree: $-\frac{4\pi}{3} \cdot \frac{180}{\pi} =$

$$2^{\text{rd}}$$
 step: $\cos(-240^\circ) = -\frac{1}{2}$.