5.3. Linear Programming in 2 Dimensions
Tuesday, October 17, 2017 8:26 AM 8:26 AM

Goal: Solve linear programming problems in 2 Dimensions.

E.g. Small truck company.

	Capacity	Grew required	# of trucks available
A	300 lbn	3	40
В	500 lbn	2	60

Exactly 180 truck operations.

X: # truck A to utilize
y: # truck B to utilize

How many trucks A and trucks B such that the

capacity is maximized:

Common sense: x = 20; y = 60

Capacity = 300x + 500y.

 $x \le 40$; $y \le 60$ Constraints x>0; y>0 $(3x + 2y \le 180)$ Find x, y such that C = 300x +500y is maximum subject to these constraints. * Step 1: Find the fearible region for the constraints $2y \leq -3x + 180$ $y \leq -\frac{3}{2}x + 90$ (0,60) (20,60) (40,30) (0,0) $y = -\frac{3}{2}x + 90$

Conner points	$C = 300 \times + 500 y$			
(0,0)	3			
(40,0)	12000			
(0,60)	30000			
(40,30)	27000			
(20,60)	36000 - maximum.			
Solution $x = 20$; $y = 60$.				

- 1) The expression that describes the quantity you want to optimize.
- (2) Constraints (System of inequalities)
- 3 Using 2, find fearible region, find corner points.
- 4) Plug corner points into expression in 1, find the aptimizer.

Manufacturer

A hours to finish

2 types of product

B hours to finish

12 hours to finish. E.g. Manufacturer Total # of hours for product design is at most Total # of hours for product finishing is at most 180 hours # of product A is no more than 15. Each product A sells for\$500 Each product B sells for \$ 1000 X: # of product A; y: # of product B. Find x and y such that profit is maximized. (1) Profit: P = 500x + 1000y

Tuesday, October 17, 2017 9:16 AM
$$8 \times + 8 y \leq 160$$

$$4 \times + 17 y \leq 180$$

(3) Draw the fearible region and find conner points Did this last time.

(anner Points)
$$P = 500 \times +1000 \text{ J}$$

(0,0) \longrightarrow 0
(15,0) \longrightarrow 7500 Rounddown
(0,15) \longrightarrow 15000
(15,5) \longrightarrow 12500 $\times = 7$
(7.5,12.5) \longrightarrow 16250 $\times = 12$

region) = 15500

in fearible

(want to be