Tuesday, November 14, 2017 8:35 AM B $A \cap B = \phi$ (A, B are mutually exclusive) P(AUB) = P(A) + P(B)E.g. Experiment: toss 2 fair coins once. A = event that we get at least 1H $A = \{HT, HH, TH\}$ B = event that we get exactly 2T $B = \{TT\}$ $A \cap B = \phi$ $P(A \cup B) = \frac{P(A) + P(B)}{2}$ $= \frac{3}{4} + \frac{1}{4}$ T

Tuesday, November 14, 2017 8:39 AM

The complement of an event
Experiment: to
$$n 2 coins$$

 $A = got at least 1H = {HT, TH, HH}
 $A' = the complement of A in S = {TT}
 A'
 $n(A) + n(A') = n(S)$
 $n(S)$
 $n(S$$$

Eq. Tors 2 dice
Q: Find the probability that the # of points on each dive
are not the name?
let A be the event that the # of points on the 2 dive are
the name:
$$A = \{(1,1), (2,2), \dots, (6,6)\}$$

So, $P(A) = \frac{6}{36}$.
A': the event we are interested in.
 $P(A') = 1 - P(A) = 1 - \frac{6}{36} = \frac{30}{36} = \frac{5}{6}$

Tuesday, November 14, 2017 8:48 AM

E.g. Toss 2 dice Q: Find the probability that sum > 4 $A = event that sum \leq 4$ $A = \left\{ (1, 1), (1, 2), (1, 3), (2, 2), (2, 1), (3, 1) \right\}$ $\mathbb{P}(A)=\frac{6}{36}.$ A' = event that we are interested in: $P(A') = 1 - P(A) = 1 - \frac{6}{36} = \frac{30}{36} = \frac{5}{6}$ Oddes against an event and odds in favor of an event. E: event The odds in favor of $E = \frac{P(E)}{P(E')}$ (success; failure) The odds against $E = \frac{P(E')}{P(E)}$ (failure : success)

Tuesday, November 14, 2017 8:56 AM

E.g. Tons 2 fair coms: E = get at least 1H = {HT, TH, HH} $E' = \{TT\}$ $P(E) = \frac{3}{4}; \quad P(E') = \frac{1}{4}; \quad \frac{3}{4}$ Odds in favor of E: 3:1. $\left(=\frac{\frac{3}{4}}{\frac{1}{4}}\right)$ Odds against E: 1:3. E.g. Roulette odd in favor: 1:37 One number bet : odd against: 37:1 Even/odd bet : odd in favor: 18:20 odd against: 20:18.