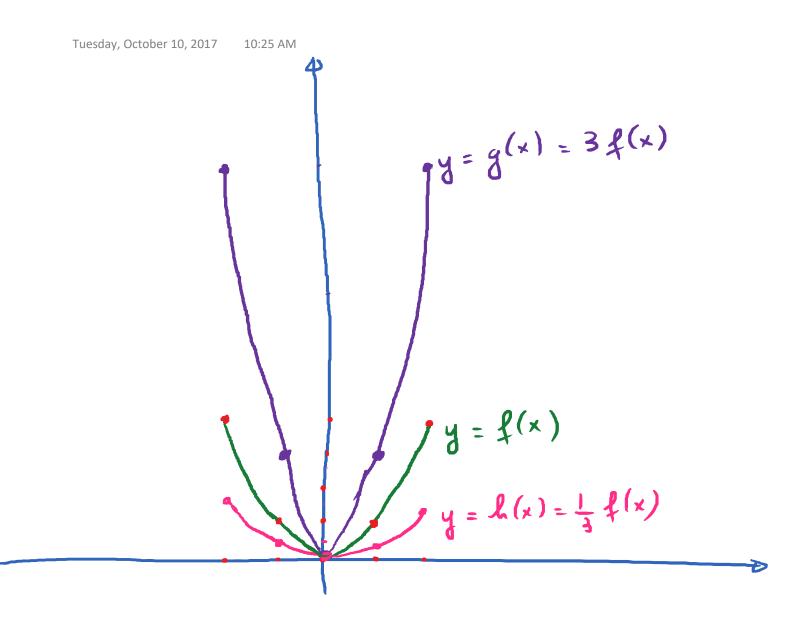
Vertical Strutching and Vertical Shrinking of Graph.
Vartical Strutching and Vertical Shrinking of Graph.

$$\frac{x}{|f(x)| = |x|}{|x|}$$

$$\frac{x}{|f(x)| = |x|}{|x|}$$

$$\frac{x}{|f(x)| = |x|}{|x|}$$


$$\frac{x}{|f(x)| = |x|}{|x|}$$

$$\frac{y(x) = 2 f(x) = 2 |x|}{|x|}$$

$$\frac{x}{|f(x)| = 2 f(x)} = 2 |x|$$

$$\frac{x}{|x|} = \frac{y(x) = 2 f(x)}{|x|}$$

y = f(x) is a function, c is a positive number. If c > 1, the graph of y = c f(x) is obtained from the graph of y = f(x) by vertically stretching the graph of y = f(x) by a factor of c. (Multiply each y-coordinate of every point on the old graph by c) If c < 1, the graph of y = c f(x) is the graph of y = f(x) vertically shrunk by multiplying each y-coordinate by c. E.g. $f(x) = x^2$. Graph this function, show 5 key points on the graph. (a) Use this graph to obtain graph of g(x) = 3x² $h(x) = \frac{1}{3}x^2$

Honizontal Stretching and Shrinking
Honizontal Stretching and Shrinking

$$y = \frac{1}{2}$$

 $z = \frac{1}{2}$
 $z = \frac{1}{2}$
 $y = \frac$

Therefore, October 10, 2017 10:00 My of

$$12^2 - 8 - 6$$
 $2^2 + 4 = f(\frac{1}{2}x) + x$
 $3 = f(x)$ is a function. $c > 0$ is a positive #.
If $c > 1$, the graph of $y = f(cx)$ is the graph
of $y = f(x)$ horizontally shrunk by dividing
leach x - coordinates of the points on the old graph
by c .
If $c < 1$, the graph of $y = f(cx)$ is the graph
of $y = f(x)$ horizontally stretch by multiplying
each x - coordinates of the old graph by $\frac{1}{c}$.

Tuesday, October 10, 2017

$$\frac{F \times F \times F}{F \times F} = \frac{F \times F}{F} = \frac{F \times F$$

Did HW # 13