2.6-Combinations of Functions and Composite Functions
Montage, Federary 26, 2000 1123 AM
Obj 1: Find the domain of a function.
* Division by zoro.
* Take a square root on even root of a negative

To find the domain of a function, we need to
exclude from the domain the real values of x
that course division by zoro on taking the square root
of a negative number.
E.g.
$$g(x) = \frac{5x}{x^2 - 49}$$
. Find the domain of
 g ?
Step 1: $x^2 - 49 = 0$
 $x^2 = 49$
 $x = \pm 7$
Step 2: Domain is all real numbers except for
 $x = 7$ and $x = -7$.

Monday, February 26, 2018 11:23 AM

In interval notation:

Domain =
$$(-\infty, -7) \cup (-7, 7) \cup (7, \infty)$$

 $= -\infty$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$
 $= -3$

11.22 /// Fak 26 2010 B /

Domain =
$$(-\infty, 0) \cup (0, 2) \cup (2, 3) \cup (3, \infty)$$

Key: To find the domain of $f(x) = \frac{p(x)}{q(x)}$.
Step 1: Set denomination $q(x) = 0$.
Step 2: Solve for x in $q(x) = 0$.
Exclude those from the domain
E.g. $h(x) = \sqrt{8-5x}$. Find the domain of h.
(want it to be ≥ 0
To find the domain : Require : $8-5x \ge 0$
 $-\frac{5x}{75} = -\frac{8}{-5} \implies x \le \frac{8}{5}$
In interval notation:
 $D = (-\infty, \frac{8}{5}]$

Monday, February 26, 2018
E.g.
$$u(x) = \frac{5x}{\sqrt{24-3x}}$$
. Find the domain of u .
To find domain: $24-3x > 0$
 $\frac{-3x}{-3} < \frac{-24}{-3}$
 $x < 8$
D = $(-\infty, 8)$
E.g. $f(x) = \frac{\sqrt{x-2}}{x-5}$. Find the domain of f .
 $x \neq 5$
To interval notation:
D = $(2,5) \cup (5,\infty)$