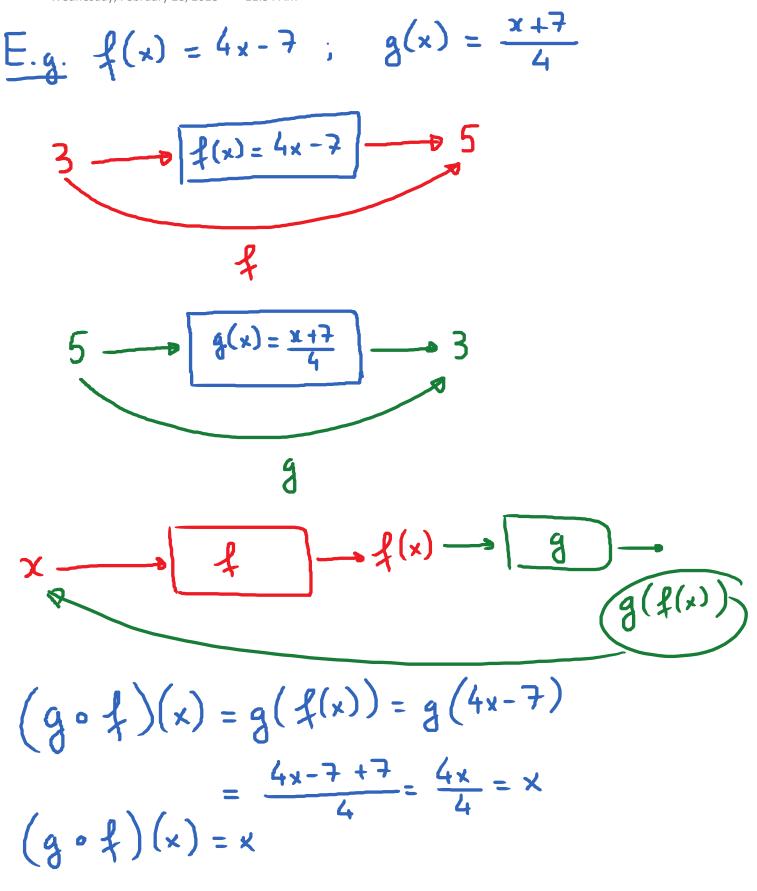
2.7. Inverse Functions.



 $(f \circ g)(x) = f(g(x)) = f(\frac{x+7}{4}) = 4 \cdot (\frac{x+7}{4}) - 7$ = x+7-7 = × Obj 1: Define the inverse of a function and verify that 2 functions are inverses of each other Let f and g be functions such that $(f \circ g)(x) = x$ for all x in domain of g. (gof)(x) = x for all x in domain of f Then we say that g is the inverse function of f. We usually denote the function g by f (read as finverse) Note: f^{-1} mean the inverse function of f. If does not mean $\frac{1}{f}$.

Wednesday, February 28, 2018 11:49 AM

E.x. Verify inverse functions:
Determine whether
$$f(x) = \frac{3}{x-4}$$
 and $g(x) = \frac{3}{x} + 4$
are inverses of each other.
 $(g \circ f)(x) = g(\frac{3}{x-4}) = \frac{3}{\frac{3}{x-4}} + 4$
 $= \frac{3}{1} \cdot \frac{x-4}{3} + 4$
 $= x-4 + 4 = x$
 $(g \circ f)(x) = x \cdot$
 $(f \circ g)(x) = f(\frac{3}{x} + 4) = \frac{3}{\frac{3}{x} + 4} = \frac{3}{\frac{3}{x}}$
 $= \frac{3}{1} \cdot \frac{x}{3} = x \cdot$
So, f and g are inverse of each other.

Wednesday, February 28, 2018 Obj 2: Method to find the inverse function of a given function. Strutegy: (1) Replace the notation f(x) by the letter y in the equation for f(x)(2) Solve for x in terms of y. (Get x by it self) (3) Interchange the x and the letter y in the equation for step 2 (4) Replace the letter y in (3) by the notation $f^{-1}(x)$. E.g. Apply the method outlined above to find the inverse function of $f(x) = 4x^3 - 1$. (2) Do the sume for $f(x) = \frac{5}{x} - 6$

Wednesday, February 28, 2013
12:13 PM
(1). Step 1:
$$y = 4x^3 - 4$$

Step 2: $y + 1 = 4x^3$; $x^3 = \frac{y+1}{4}$;
 $x = \sqrt[3]{\frac{y+4}{4}}$
Step 3: $y = \sqrt[3]{\frac{x+1}{4}}$.
Step 4: $f^{-1}(x) = \sqrt[3]{\frac{x+1}{4}}$
(2) $f(x) = \frac{5}{x} - 6$
Step 1: $y = \frac{5}{x} - 6$; $y + 6 = (5)$
Multiply both ridon by x.
 $x(y+6) = 5$; $x = \frac{5}{y+6}$.

Step 4:
$$f^{-1}(x) = \frac{5}{x+6}$$