to determine the optimal solution.

Monday, March 5, 2018 12:38 PM

Apply the simplex method to maximize

$$P = 5x + 10y \rightarrow -5x - 10y + P = 0$$
Subject to: $8x + 8y \le 160$
 $4x + 12y \le 180$.
Step 1: Introduce Slack Variables.
Rename x to x_1 and y to x_2
The constraint has 2 inequalities — need 2
slack variables : A_1 , A_2

= 160 $8x_{1} + 8x_{2} + 5_{1}$ = 180 $4x_{1} + 42x_{2}$ + ^2 +P=0 $-5x_{1} - 10x_{2}$ $x_1 \ge 0; x_2 \ge 0; A_1 \ge 0; A_2 \ge 0$ X1, X2: non-basic variables. s1, s2, P: basic variables. Step 2: Form the Simplex Tableau. - Form a 3-by-5 coefficient matrix, augmented it by the night hand nide.

Monday, March 5, 2018

12:58 PM

* Find pivot now: To find the pivot now, divide the #'s above the -10 into the corresponding numbers in the rightmost column and find the smallest quotient. The now that corresponds the smallest quotient is the pivot now. - The pivot position is the entry on the pivot now and pivot column. Step 4: Use basic row operations to obtain the #1 the pivot position and use that to obtain O everywhere else in the pivot column.

a sitting
Monday, March 5 (018 - 106 PM
Na
$$x_2$$
 x_2 x_1 x_2 P
 x_4 x_2 x_2 x_1 x_2 P
 x_4 x_2 x_1 x_2 P
 x_4 x_2 x_1 x_2 x_1 x_2
 $\begin{pmatrix} 8 & 8 & 1 & 0 & 1 & 60 \\ -5 & -10 & 0 & 0 & 1 & 0 \end{pmatrix}$
 $R_2 \leftrightarrow -8R_2 + R_1$
 $\frac{1}{3}$ $\frac{1}{1}$ 0 $\frac{1}{12}$ 0 $\frac{160}{15}$
 $-5 & -10 & 0 & 0 & 1 & 0 \\ -5 & -10 & 0 & 0 & 1 & 0 \\ R_3 \leftrightarrow -10R_2 + R_3$
 x_1 x_2 x_2 x_2 P
 x_4 $\frac{16}{3}$ 0 $\frac{1}{2}$ $-\frac{2}{3}$ 0 $\frac{40}{15}$
 r_2 $\frac{4}{3}$ 1 0 $\frac{4}{12}$ 0 $\frac{15}{15}$
 P $-\frac{5}{3}$ 0 0 $\frac{5}{6}$ 1 $\frac{150}{150}$
the extering variable new replaces the exciting variable.
Step 5: If there are still regative #'s in the bottom row,
repeat the process (Step 2 through 4) until there are no
mare negative number in the bottom row.

entening pivot column pivot position smallert 9 queties $-\frac{1}{3}R_1 + R_2 \iff R_2 (I)$ $(\widehat{\mathbf{T}} \ \mathsf{R}_1 \ \longleftrightarrow \ \frac{3}{\mathsf{I}_6} \ \mathsf{R}_1$ $\frac{5}{3}R_1 + R_3 \leftrightarrow R_3 \bigoplus$ Step 6: Once there are no more negative in the bottom now, the rightmost column gives us the solution. $x_1 = 7.5$; $x_2 = 12.5$; max P = 162.5(x = 7.5); (y = 12.5)