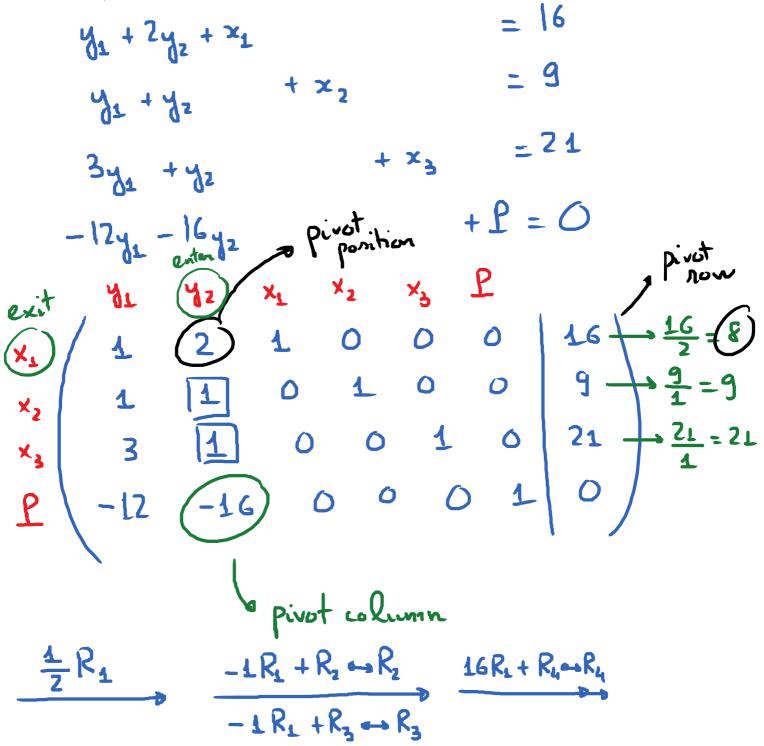
6.3. The Dual Problem Wednesday, March 7, 2018 12:34 PM Goal: Solve minimization problem with constraints of the form >. Recap: The simplex method helps is solve maximization problem with constraints of the form \leq . For e.g., Maximize P = 5x + 10ySubject to: 8x + 8y \le 160 $4x + 12y \le 180$. To day, the problem is: Minimize $C = 16x_1 + 9x_2 + 21x_3$. Subject to: $x_1 + x_2 + 3x_3 \ge 12$. $2x_1 + x_2 + x_3 \ge 16$. $x_1, x_2, x_3 \ge 0$ Key idea for solving these minimization problems: to translate this back into maximization problems with \leq constraints and apply the Simplex Method.

Wednesday, March 7, 2018 Here are the steps: Step 1 : Write down the Initial Matrix for the problem (Crefficients for the objective function must be in the bottom now) Initial Matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 16 & 9 & 21 \end{pmatrix}$ 12 16 1 a 3-by-4 matrix. Step 2: Find the transpose of the initial matrix. The transpose of a matrix A is another matrix, denoted by A'. Columnsof A -> nows of AT and Rows of A -> columns of A^T

Wednesday, March 7, 2018 12:52 PM

Maximize
$$P = 12y_1 + 16y_2$$

Subject to the constraints:
 $y_1 + 2y_2 \leq 16$
 $y_2 + y_2 \leq 9$
 $3y_1 + y_2 \leq 21$
Step 4: Apply the Simplex method from last time to
rolve this dual problem.
* Introduce slach variables
* Form the Simplex Tablean.
* Identify pivet positions.
* Apply row operations to reduce simplex tablean.
* Keep truch of exiting and entering variable.



Wednesday, March 7, 2018 1:22 PM xT **4**2 8/1/2 6 0 0 0 $L = \frac{L}{2}$ 42 10 $-\frac{L}{2}$ 0 13 1 0 $-\frac{4}{2}$ 0 5 0 $\begin{array}{c}
0 \\
-\frac{5}{2}R_2 + R_3
\end{array}$ 0 -> pivot position -> turn it to 1 -> row openations P X3 X₂ 91 81 XL 1 <u>1</u> -<u>1</u> 0 -<u>1</u> 2 0 -1 0 Y2 U 0 31 8 0 1 - 5 02 1 P 8 6 4 0 0 Solution to the dual problem is $y_1 = 2$; $y_2 = 7$; max P = 136

Step 5: The Solution to the original minimization problem can be read off from the bottom row of the tableau. So, $x_1 = 4$; $x_2 = 8$; $x_3 = 0$ Min C = 136