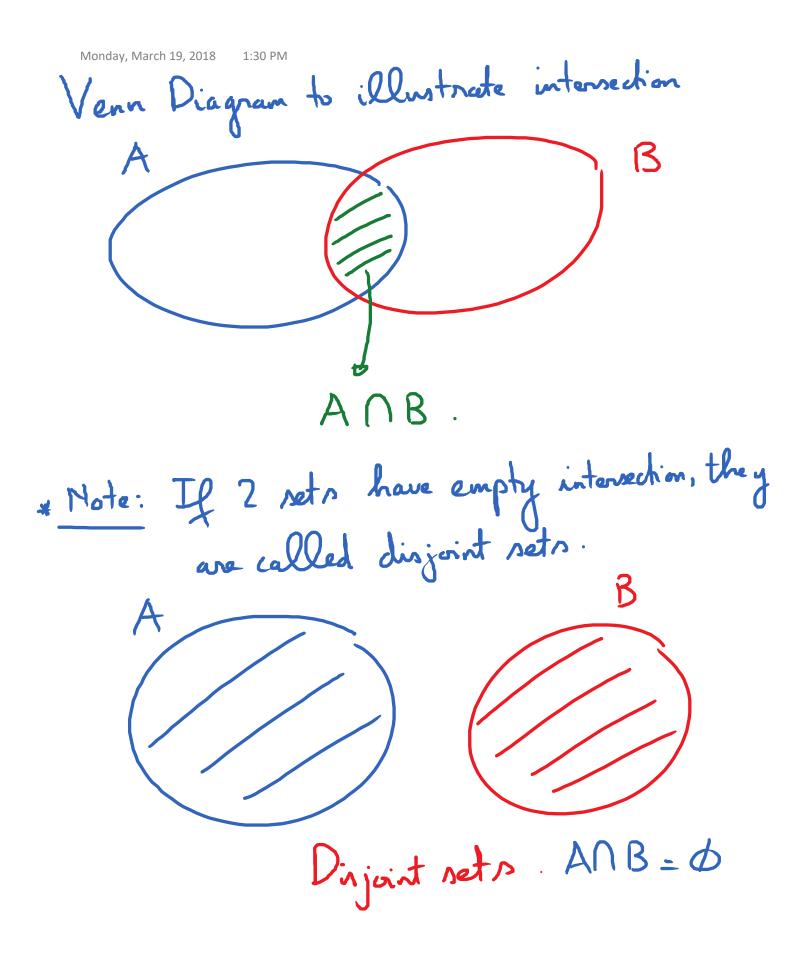
Monday, March 19, 2018 1:17 PM


Operation on Sets (1) Union of Sets A, B are sets. Uef: The union of A and B is a set whose elements are the elements of A and the elements of B. <u> $E.g.</u> A = {1, 2, 3}. B = {a, b, c, d}$ </u> Find the union of A and B. -Ams: the set {1,2,3,a,b, c, d} Notation for the union: AUB $\rightarrow AUB = \{1, 2, 3, a, b, c, d\}$ $\underline{t}_{.q.} X = \{2, 4, 6, 8\}$ Find AUX = $\{1, 2, 3, 4, 6, 8\}$

Monday, March 19, 2018 1:20 PM

Vann diagram for AUB B AUB (2) Intensection of sets The intersection of 2 sets A and B is a set of all the elements that are common to both A and B. <u>E.g.</u> $A = \{1, 2, 3\}$ $B = \{a, b, c, d\}$ The intersection of A and B is the empty $A \cap B = \phi$

Monday, March 19, 2018 1:23 PM

Notation for intersection:
$$A \cap B$$

 $\overline{E.g.} \quad M = \{1, 2, ..., 10\}$
 $N = \{x \mid x \text{ is an even } \#\}$
Find $M \cap H$.
 $M \cap N = \{2, 4, 6, 8, 10\}$
 $\overline{Ex.} \quad D = \{x \mid x \text{ is a month that starts with } J\}$
 $\overline{Ex.} \quad D = \{x \mid x \text{ is a month that starts with } J\}$
 $\overline{E} = \{x \mid x \text{ is a month that ends with } aY\}$
Find $D \cup E$ and F and $D \cap E$.
 $D \cup E = \{Jan, Feb, May, July, June\}$
 $D \cap E = \{Jan, July\}$

(3) The complement of a set A and U are note. A C U The complement of A in U is the set of elements that are in U but not in A. E.g. U = { x | x is a month in a year } $A = \{x \mid x \text{ is a month that starts with } J\}$ Complement of A in U = { Fab, Mon, Apr, May, Aug, Sept, Oct, Nov, Dec } Notation for the complement of A in U: A (read as Aprime) A'= {x | x is in U but x is not in A }. A A'

Monday, March 19, 2018 1:36 PM

E.x.
$$U = \{1, 2, ..., 10\}$$

 $A = \{x \mid x \text{ is even, positive, less than 10}\}$
Find A'. A' = $\{1, 3, 5, 7, 9, 10\}$
Notation: $n(A) = \# \text{ of elements in } A$.
E.g. $A = \{1, 2, 3, 4\}$. $n(A) = 4$
 $B = \{a, b, c\}$. $n(B) = 3$
 $C = \{x \mid x \text{ is a menth in a year }\}$
 $n(C) = 12$
E.g. $U = \{x \mid x \text{ is a state in the } U.S.\}$
 $A = \{x \mid x \text{ is a state that state with }T\}$
Find $n(A')$? $n(A') = 48$.